MANUALE D'USO

Analizzatori di rete trifase per barra DIN CVM/E3/MINI CVM/E3/MINI/MC CVM/E3/MINI/FLEX CVM/E3/MINI/FLEX

TECNOLOGIE DI MISURA

ATTENZIONE!

Questo analizzatore è stato progettato per prevenire infortuni all'operatore se correttamente e propriamente usato. Tuttavia nessuna progettazione ingegneristica può rendere sicuro uno strumento se esso non viene usato e mantenuto con le dovute attenzioni e precauzioni e nel rispetto delle norme. Questo manuale deve essere letto attentamente e per intero prima di compiere una qualsiasi misurazione. La mancata osservanza delle istruzioni e delle norme di sicurezza può causare danni sia all'operatore che allo strumento.

L'analizzatore mod. CVM/E3 qui trattato è uno strumento di misura idoneo unicamente per l'installazione fronte-quadro e all'interno di quadri elettrici costruiti a regola d'arte.

AVVERTIMENTO!

Ogni qualvolta si tema che le misure di protezione siano state ridotte, occorre mettere l'apparecchio fuori servizio e impedirne ogni funzionamento involontario.

Questo strumento serve alla misura di grandezze elettriche. Esso deve pertanto essere usato da personale competente, conscio dei rischi propri dell'elettricità e a conoscenza delle norme di sicurezza relative.

CVM/E3 non richiede manutenzione speciale. Nessuna modifica o riparazione deve essere effettuata sullo strumento aperto ed alimentato. Nel caso in cui tali azioni siano necessarie, devono essere compiute solo da personale qualificato ed autorizzato.

Alle caratteristiche ed avvertenze riportate su questo manuale, vanno aggiunte e considerate tutte le norme di sicurezza di carattere generale e quelle definibili come "uso appropriato".

È opportuno ricordare che, particolarmente su certe "linee elettriche" di potenza si possono verificare "spikes" di molte volte il valore nominale.

Ciò deve essere considerato ogni qualvolta ci si appresta ad effettuare una misura.

SIMBOLI PRESENTI SULLO STRUMENTO

Prestare attenzione! Consultare il manuale!

Termini racchiusi tra parentesi (*****) o tra doppi apici "*****" si riferiscono a funzioni, indicazioni proprie dello strumento e termini tecnici, di uso corrente, in lingua inglese.

INDICE

1.	INTR	ODUZIONE	Pag. 4
	1.1.	Controllo iniziale	Pag. 5
	1.2.	Controllo delle tarature	Pag. 5
2.	PRE	CAUZIONI GENERALI	Pag. 5
2	INST		Pag 6
у.	3 1	Terminali di connessione	Pag 7
	3.2.	Schemi di collegamento	Pag. 9
4.	UTIL	IZZO E FUNZIONI	Pag. 15
	4.1.	Convenzione secondo il metodo Circutor	Pag. 15
	4.2.	Convenzione secondo Il metodo IEC	Pag. 15
	4.3. 11	Tabella dei parametri	Pag. 16
	4.4.	Tastiera	Pag. 10 Pag. 17
	4.6.	Display	Pag. 18
	4.7.	Indicatori a LED	Pag. 19
	4.8.	Ingresso digitale	Pag. 19
	4.9.	Uscita digitale	Pag. 19
5	VISI		Pag 20
0.	5.1.	Profilo Analyzer (analizzatore di rete)	Pag. 20
	5.2.	Profilo e3 (valutatore di efficienza energetica)	Pag. 24
	5.3.	Pagina delle informazioni	Pag. 28
	5.4.	Pagina dello stato di ingressi e uscite	Pag. 28
6		GRAMMAZIONE	Pag. 28
0.	61	Primario di tensione	Pag. 20
	6.2	Secondario di tensione	Pag. 30
	6.3.	Primario di corrente	Pag. 30
	6.4.	Secondario di corrente	Pag. 31
	6.5.	Quadranti	Pag. 31
	6.6.	Convenzione di misura	Pag. 32
	6.7.	Circuito di misura	Pag. 32
	6.8.	Periodo di integrazione per la Massima Domanda	Pag. 33
	6.9.	Azzeramento della Massima Domanda	Pag. 33
	6.10.	Reset dei valori massimi e minimi	Pag. 34
	6.11.	Reset del contatori di energia, costo, kgCU2	Pag. 34
	0.12. 6 1 2	Aurvazione delle pagine delle componenti armoniche	Pag. 35
	0.13. 6 17	kgCO2. lasso di conversione per produzione	Pay. 35 Dag 26
	6 15	Costo in valuta: tasso di conversione per produzione	Pan 36
	0.10.		i ug. 50

	6.16.	Costo in valuta: tasso di conversione per assorbimento	Pag. 36
	6.17.	Configurazione dell'uscita digitale	Pag. 37
	6.18.	Configurazione dell'ingresso digitale	Pag. 42
	6.19.	Retro-illuminatore	Pag. 42
	6.20.	Comunicazione RS485	Pag. 43
	6.21.	Protezione del menu di programmazione	Pag. 46
7.	COM	UNICAZIONE PER ACQUISIZIONE DATI	Pag. 47
	7.1.	Connessioni	Pag. 47
	7.2.	Protocollo Modbus RTU	Pag. 48
	7.3.	Comandi Modbus	Pag. 49
	7.4.	Protocollo BACnet	Pag. 62
8.	CAR	ATTERISTICHE TECNICHE	Pag. 66
	8.1.	Dimensioni esterne	Pag. 68
9.	TRA	TAMENTO DEI RIFIUTI ELETTRICI-ELETTRONICI	Pag. 68

1. INTRODUZIONE

Vi ringraziamo per aver scelto l' **ANALIZZATORE DI RETE MULTIFUNZIONE SUPERCOMPATTO** mod. **CVM/E3**.

Questo manuale illustra la funzionalità dei seguenti modelli:

- CVM/E3/MINI Analizzatore di rete multifunzione, per abbinamento a TA "tradizionali" con secondario .../5A oppure .../1A
- CVM/E3/MINI/MC Analizzatore di rete multifunzione, per abbinamento a sensori compatti dedicati di tipo MC1 o MC3
- CVM/E3/MINI/FLEX Analizzatore di rete multifunzione, per abbinamento a sensori flessibili dedicati CVM/FLEX70 o CVM/FLEX120

Per la misura di corrente, ogni modello di CVM/E3 necessita di specifici trasformatori amperometrici "tradizionali" o sensori di corrente opzionali. Tra i TA "tradizionali" con uscita proporzionale .../5A oppure .../1A si segnalano gli articoli Asita delle gamme TC, TCH, TP, ecc...

	PORTATA	CAMPO D	DIAMETRO	
MODELLO	NOMINALE	Valore Massimo	Valore Minimo	INTERNO
MC1/20	150A	150A	300mA	20mm
	200A	200A	450mA	2011111
	250A	250A	600mA	
MC1/30	400A	400A	1.00A	30mm
	500A	500A	1.25A	
	500A	500A	1.25A	
MC1/55	1000A	1000A	2.50A	55mm
	1500A	1500A	3.75A	
	1000A	1000A	2.50A	
MC1/80	1500A	1500A	3.75A	80mm
	2000A	2000A	4.00A	
MC3-63A	63A	63A	130mA	7,1mm
MC3-125A	125A	125A	300mA	14,6mm
MC3-250A	250A	250A	600mA	26,5mm

I sensori MC1 ed MC3 sono disponibili nelle seguenti taglie/versioni:

I sensori **CVM/FLEX70** e **CVM/FLEX120** prevedono 2 portate di misura 200/2000A selezionabili in fase di configurazione dello strumento, ed il loro diametro interno utile di misura è di Ø70mm oppure Ø120mm.

Al fine di ottenere le massime prestazioni dal Vs. strumento, leggete attentamente questo manuale ed utilizzate lo strumento sempre nella maniera qui descritta.

1.1. CONTROLLO INIZIALE

Al ricevimento dello strumento controllare accuratamente che non abbia subito danni durante il trasporto e che sia completo degli accessori sotto riportati.

Se vi sono possibilità che lo strumento abbia subito danni o se sembra non funzionare correttamente, contattate il Vs. rivenditore di fiducia o il servizio tecnico **asita**.

La confezione ora in Vs. possesso deve contenere:				
a) Analizzatore multifunzione trifase mod. CVM/E3	N° 1			
b) Connettore di alimentazione a 2 morsetti	N° 1			
c) Connettore di misura tensione a 4 morsetti	N° 1			
d) Connettore di misura corrente a 6 morsetti	N° 1			
e) Connettore per I/O digitali e RS485 a 6 morsetti	N° 1			
f) Vaschetta copri connettori di connessione	N° 2			
g) Gancio di fissaggio per guida DIN	N° 1			
h) Manuale d'uso	N° 1			

Al momento della stesura del presente manuale, le versioni disponibili sono:

Articolo	Misura di corrente	IN / OUT digitali	RS485
CVM/E3/MINI	da TA /5A o /1A (non inclusi)	1 / 1	SI
CVM/E3/MINI/MC	da sensori MC1 o MC3 (non inclusi)	1 / 1	SI
CVM/E3/MINI/FLEX	da sensori CVM/FLEX (non inclusi)	1/1	SI

1.2. CONTROLLO DELLE TARATURE

Questo strumento utilizza materiali e componenti scelti e di alta qualità. Tuttavia, l'uso prolungato, gli sbalzi termici o eventuali maltrattamenti, possono influire negativamente sulla precisione.

In funzione di ciò e al fine di mantenere il Vs. parco strumenti sempre efficiente, si consiglia di prevedere un controllo periodico delle tarature con campioni certificati ACCREDIA LAT. Tale controllo si può pianificare in un periodo variabile da uno a due anni e ciò in funzione delle condizioni di utilizzo e di conservazione.

Contattateci, siamo a Vs. disposizione per fornire questo tipo di servizio.

2. PRECAUZIONI GENERALI

 Lo strumento mod. CVM/E3 è stato progettato in accordo con la normativa CEI EN 61010-1, la quale riporta le prescrizioni di sicurezza per apparecchi elettrici di misura e controllo. L'analizzatore di rete multifunzione CVM/E3 è concepito per operare in bassa tensione.

- Non sottoporre lo strumento a tensioni o correnti superiori ai valori massimi consentiti. Leggere attentamente il presente manuale prima di collegare lo strumento.
- Questo strumento può operare a temperature comprese tra -5° e +45°C.
- Non utilizzare o esporre lo strumento alla luce diretta del sole, ad elevate temperature, alta umidità o condensa. Se esposto a queste condizioni ambientali, lo strumento può danneggiarsi e non mantenere a lungo le proprie specifiche tecniche.
- CVM/E3 è costruito per essere installato su quadri elettrici di comando e/o controllo; verificare le caratteristiche costruttive dello strumento riportate su questo manuale.
- Non utilizzare lo strumento in prossimità di dispositivi in grado di emettere forti radiazioni elettromagnetiche o elettrostatiche. Questa influenza può causare errori sulla misurazione.
- Non utilizzare CVM/E3 in ambienti con presenza di gas corrosivi o esplosivi. Lo strumento può danneggiarsi e si può avere il rischio di esplosioni.
- Installare CVM/E3 unicamente all'interno di quadri elettrici costruiti secondo la regola dell'arte.
- Prima di alimentare lo strumento, assicurarsi che la tensione di alimentazione sia corrispondente al valore riportato sullo strumento stesso.
- Utilizzando una tensione di alimentazione non corretta è possibile danneggiare seriamente lo strumento oltre a causare rischi all'operatore.
- Controllare il corretto collegamento degli ingressi della tensione di misura (L1, L2, L3, N) e dei secondari dei TA o sensori di corrente esterni ai relativi ingressi di corrente.

Se, dopo l'installazione, lo strumento visualizza un valore del fattore di potenza errato (molto basso o negativo) e/o una potenza assorbita negativa, mentre le tensioni e le correnti delle tre fasi sono corrette, controllare la sequenza del collegamento delle fasi di tensione e la relazione di fase tra ogni singola tensione e la corrispondente corrente.

3. INSTALLAZIONE E CONNESSIONE

Gli analizzatori multifunzione CVM/E3 sono strumenti programmabili per la misura, il calcolo e la visualizzazione di tutti i principali parametri delle linee elettriche monofase e trifase con neutro sia equilibrate che squilibrate. Le misure sono in Vero Valore Efficace (T-RMS) e sono realizzate tramite ingressi diretti in tensione AC fino a 300V fase-neutro (520V fase-fase) ed ingressi in corrente AC tramite TA .../5A e .../1A oppure per abbinamento a sensori MC1-MC3 con secondario .../250mA, oppure per abbinamento a sensori flessibili CVM/FLEX. CVM/E3 dispone di:

- **3 tasti** per scorrere le pagine e muoversi tra i menu
- 2 indicatori a LED: CPU e allarme
- Display LCD ad alta luminosità e contrasto
- **1 ingresso digitale** per identificazione fascia tariffaria o per rilevazione stato logici esterni
- 1 uscita digitale totalmente configurabile
- Interfaccia RS485 con protocollo MODBUS-RTU© o BACnet

Lo strumento deve essere connesso ad un circuito di alimentazione protetto con fusibili, di tipo gl (IEC269) o M, con corrente di intervento compresa tra 0,5A e 2A.

Il circuito di alimentazione e quello della tensione di misura devono essere realizzati con conduttori di sezione minima di 1mm², mentre la linea dei secondari dei TA deve avere una sezione minima di 2,5mm².

CVM/E3 deve essere installato su barra DIN (occupa 3 moduli DIN) oppure, tramite accessorio CVM/E3/FAD, a fronte-pannello su una dima di foratura $68^{+0.8}$ mm x $68^{+0.8}$ mm in riferimento con la norma DIN43700.

Tutte le connessioni elettriche devono essere collocate all'interno del quadro elettrico, dietro il pannello frontale in posizione non raggiungibile senza l'apertura meccanica del pannello stesso.

3.1. TERMINALI DI CONNESSIONE

3.1.1. Terminali di connessione di CVM/E3/MINI e CVM/E3/MINI/MC

	Identificazione terminali					
1	S1 ingresso corrente L1	A1	Alimentazione ausiliaria in AC			
2	S2 ingresso corrente L1	A2	Alimentazione ausiliaria in AC			
3	S1 ingresso corrente L2	А	RS485: A+			
4	S2 ingresso corrente L2	В	RS485: B-			
5	S1 ingresso corrente L3	S	RS485: S-GND			
6	S2 ingresso corrente L3	7	Terminale comune per I/O digitali			
10	Ingresso di tensione VL1	8	Uscita digitale OUT1 (collettore aperto)			
11	Ingresso di tensione VL2	9	Ingresso digitale IN1			
12	Ingresso di tensione VL3	13	Ingresso di Neutro N			

3.1.2. Terminali di connessione di CVM/E3/MINI/FLEX

	Identificazione terminali					
1	S1 ingresso corrente L1	A1	Alimentazione ausiliaria in AC			
2	S1 ingresso corrente L2	A2	Alimentazione ausiliaria in AC			
3	S1 ingresso corrente L3	Α	RS485: A+			
4	Senza connessione	В	RS485: B-			
5	COM ingressi di corrente	S	RS485: S-GND			
6	Schermo comune IN-I	7	Terminale comune per I/O digitali			
10	Ingresso di tensione VL1	8	Uscita digitale OUT1 (collettore aperto)			
11	Ingresso di tensione VL2	9	Ingresso digitale IN1			
12	Ingresso di tensione VL3	13	Ingresso di Neutro N			

I sensori CVM/FLEX sono misuratori di corrente in AC che utilizzano il principio Rogowsky (*bobina di misura avvolta su supporto flessibile non ferroso*) per l'acquisizione di valori di corrente da 5A fino a 2000A.

La flessibilità del sensore consente una facile installazione e un veloce posizionamento all'interno del quadro elettrico e permette di ottenere misure valide indipendentemente dal posizionamento del conduttore di prova dentro il nucleo del sensore stesso.

3.2. SCHEMI DI COLLEGAMENTO

3.2.1. Linea trifase a 4 fili

circuito di misura: 4 – 3Ph

- La connessione a terra del secondario dei TA è obbligatoria unicamente nel caso in cui i TA siano installati in Media Tensione.
- I sensori ultracompatti MC1 ed MC3 hanno uscita proporzionale 250mA fondo scala; pertanto sul modello CVM/E3/MINI/MC il secondario di corrente è 0.250A fisso non modificabile.
- I sensori amperometrici flessibili CVM/FLEX hanno uscita proporzionale dedicata in mV; per tale ragione sul modello CVM/E3/MINI/FLEX il secondario di corrente è fisso non modificabile.

3.2.2. Linea trifase a 3 fili

circuito di misura: **3 – 3Ph**

- La connessione a terra del secondario dei TA è obbligatoria unicamente nel caso in cui i TA siano installati in Media Tensione.
- I sensori ultracompatti MC1 ed MC3 hanno uscita proporzionale 250mA fondo scala; pertanto sul modello CVM/E3/MINI/MC il secondario di corrente è 0.250A fisso non modificabile.
- I sensori amperometrici flessibili CVM/FLEX hanno uscita proporzionale dedicata in mV; per tale ragione sul modello CVM/E3/MINI/FLEX il secondario di corrente è fisso non modificabile.

3.2.3. Linea trifase a 3 fili in connessione ARON per CVM/E3/MINI e CVM/E3/MINI/MC

circuito di misura: 3 - ARON

- La connessione a terra del secondario dei TA è obbligatoria unicamente nel caso in cui i TA siano installati in Media Tensione.
- I sensori ultracompatti MC1 ed MC3 hanno uscita proporzionale 250mA fondo scala; pertanto sul modello CVM/E3/MINI/MC il secondario di corrente è 0.250A fisso non modificabile.
- La connessione ARON non è realizzabile con il modello CVM/E3/MINI/FLEX in quanto i sensori CVM/FLEX dispongono di terminale comune di ritorno e terminale di schermo SHLD comune, che l'utilizzatore non può modificare o manomettere.

3.2.4. Linea bifase a 3 fili

circuito di misura: **3 – 2Ph**

- La connessione a terra del secondario dei TA è obbligatoria unicamente nel caso in cui i TA siano installati in Media Tensione.
- I sensori ultracompatti MC1 ed MC3 hanno uscita proporzionale 250mA fondo scala; pertanto sul modello CVM/E3/MINI/MC il secondario di corrente è 0.250A fisso non modificabile.
- I sensori amperometrici flessibili CVM/FLEX hanno uscita proporzionale dedicata in mV; per tale ragione sul modello CVM/E3/MINI/FLEX il secondario di corrente è fisso non modificabile.

3.2.5. Linea monofase fase-fase a 2 fili

circuito di misura: **2 – 2Ph**

- La connessione a terra del secondario dei TA è obbligatoria unicamente nel caso in cui i TA siano installati in Media Tensione.
- I sensori ultracompatti MC1 ed MC3 hanno uscita proporzionale 250mA fondo scala; pertanto sul modello CVM/E3/MINI/MC il secondario di corrente è 0.250A fisso non modificabile.
- I sensori amperometrici flessibili CVM/FLEX hanno uscita proporzionale dedicata in mV; per tale ragione sul modello CVM/E3/MINI/FLEX il secondario di corrente è fisso non modificabile.

3.2.6. Linea monofase fase-neutro a 2 fili

circuito di misura: 2 – 2Ph

- La connessione a terra del secondario dei TA è obbligatoria unicamente nel caso in cui i TA siano installati in Media Tensione.
- I sensori ultracompatti MC1 ed MC3 hanno uscita proporzionale 250mA fondo scala; pertanto sul modello CVM/E3/MINI/MC il secondario di corrente è 0.250A fisso non modificabile.
- I sensori amperometrici flessibili CVM/FLEX hanno uscita proporzionale dedicata in mV; per tale ragione sul modello CVM/E3/MINI/FLEX il secondario di corrente è fisso non modificabile.

4. UTILIZZO E FUNZIONI

CVM/E3 esegue misure su 4 quadranti ed è quindi in grado di identificare la potenza/energia assorbita (+) e generata (-).

Lo strumento può elaborare le misure ed esprimerle su display in funzione di 3 diversi metodi di espressione delle misure, denominati "convenzione":

- Convenzione di misura con il metodo Circutor
- Convenzione di misura con il metodo IEC
- Convenzione di misura con il metodo IEEE

4.1. CONVENZIONE SECONDO IL METODO CIRCUTOR

4.2. CONVENZIONE SECONDO IL METODO IEC

Valori del cosØ in condizione di assorbimento (Q1, Q4)

 $\cos \phi > 0$

+1 +1

Q1

4.3. CONVENZIONE SECONDO IL METODO IEEE

Classificazione sui 4 quadranti (Q1, Q2, Q3, Q4)

Valori del cosØ in condizione di assorbimento (Q1, Q4)

4.4. TABELLA DEI PARAMETRI

Il processore interno misura, simultaneamente, i seguenti parametri:

Parametro	Unità	Fasi L1-L2-L3	Totale III	Massimi	Minimi
Tensione fase-neutro	Vph-N	Х		Х	Х
Tensione fase-fase	Vph-ph	Х	Х	Х	Х
Corrente	А	Х	Х	Х	Х
Frequenza	Hz	Х	Х	Х	Х
Potenza Attiva	M/kW	Х	Х	Х	Х
Potenza Apparente	M/kVA	Х	Х	Х	Х
Potenza Reattiva Totale	M/kvar	Х	Х	Х	Х
Potenza Reattiva – Consumata	M/kvar	Х	Х	Х	Х
Potenza Reattiva – Generata	M/kvar	Х	Х	Х	Х
Potenza Reattiva Induttiva Totale	M/kvarL	Х	Х	Х	Х
Potenza Reattiva Induttiva – Consumata	M/kvarL	Х	Х	Х	Х
Potenza Reattiva Induttiva – Generata	M/kvarL	Х	Х	Х	Х
Potenza Reattiva Capacitiva Totale	M/kvarC	Х	Х	Х	Х
Potenza Reattiva Capacitiva – Consumata	M/kvarC	Х	Х	Х	Х
Potenza Reattiva Capacitiva – Generata	M/kvarC	Х	Х	Х	Х
Fattore di Potenza	PF	Х	Х	Х	Х
Cosfì	θ	Х	Х	Х	Х
THD& di Tensione	% THD V	Х		Х	Х
THD& di Corrente	% THD A	Х		Х	Х
Dettaglio Armonico fino al 31° ordine – Tensione	Harm V	Х			
Dettaglio Armonico fino al 31° ordine – Corrente	Harm A	Х			
Energia Attiva Totale	M/kWh	X ⁽¹⁾	Х		
Energia Induttiva Totale (Consumata-Generata)	M/kvarLh	X ⁽¹⁾	Х		
Energia Capacitiva Totale (Consumata-Generata)	M/kvarCh		Х		
Energia Apparente Totale	M/kVAh		Х		
Energia Attiva fascia tariffaria 1 (ConsGener.)	M/kWh	X ⁽¹⁾	Х		
Energia Induttiva fascia tariffaria 1 (ConsGener.)	M/kvarLh	X ⁽¹⁾	Х		
Energia Capacitiva fascia tariffaria 1 (ConsGener.)	M/kvarCh		Х		
Energia Apparente fascia tariffaria 1 (ConsGener.)	M/kVAh		Х		
Energia Attiva fascia tariffaria 2 (ConsGener.)	M/kWh	X ⁽¹⁾	Х		
Energia Induttiva fascia tariffaria 2 (ConsGener.)	M/kvarLh	X ⁽¹⁾	Х		
Energia Capacitiva fascia tariffaria 2 (ConsGener.)	M/kvarCh		Х		
Energia Apparente fascia tariffaria 2	M/kVAh		Х		
Massima Domanda di Corrente	A	Х		Х	
Massima Domanda di Potenza Attiva	M/kW		Х	Х	
Massima Domanda di Potenza Apparente	M/kVA		Х	Х	

Massima Domanda di Potenza Induttiva M/kvarL		Х	Х		
Massima Domanda di Potenza Capacitiva	M/kvarC		Х	Х	
Parametro	Unità	Fascie tariffarie T1-T2		Totale	
Ore di funzionamento	Hours	X		2	X
Prezzo energetico in valuta	COST	Х		2	X
Emissioni di CO2	kgCO2	Х			X

(1) Questi parametri sono visualizzabili unicamente con interfacciamento RS485.

4.5. TASTIERA

CVM/E3 ha 3 tasti per scorrere le pagine e muoversi tra i menu

Funzionalità dei tasti nelle pagine di misura:

Tasto	Breve pressione	Lunga pressione (2 sec)
\langle	Pagina precedente	Visualizza valore minimo
\rightarrow	Pagina successiva	Visualizza valore massimo
	Naviga tra i profili	Entra in programmazione
		Visualizza Massima Domanda
		Disattiva gli allarmi
		Controlla gli Allarmi Attivi
		Visualizza le informazioni

Funzionalità dei tasti nelle pagine delle armoniche:

Tasto	Breve pressione	Lunga pressione (2 sec)
\langle	Esce dalla pagina HARM	
\rightarrow	Pagina successiva	
	Naviga tra le armoniche	Entra in programmazione

Funzionalità dei tasti nel menu di programmazione, in consultazione:

Tasto	Breve pressione	Lunga pressione (2 sec)
\langle	Pagina precedente	Configura le uscite
	Pagina successiva	Configura le uscite
		Entra nella configurazione

Funzionalità dei tasti nel menu di programmazione, in configurazione:

Tasto	Breve pressione
\langle	Salto di riga
	Incrementa la cifra (0-9) o sequenza tra le varie opzioni
	Cambia la cifra configurabile (lampeggiante)

4.6. DISPLAY

CVM/E3 ha un display LCD retroilluminato per la visualizzazione di tutti i parametri elencati al capitolo 4.4.

Il display è suddiviso in 2 aree:

- ✓ L'area con i dati numerici per ogni fase visualizza i valori istantanei, massimi e minimi di ogni singola fase L1-L2-L3-N, misurati o calcolati dall'unità CVM/E3
- ✓ L'area degli stati visualizza il tipo/riferimento di parametri visualizzati, il profilo in uso e altre icone descrittive del funzionamento di CVM/E3

Icona	Descrizione	Icona	Descrizione
\$0	Tipo di situazione: in consumo in generazione	inst	Valore istantaneo
e ³	Profilo operativo e ³	min	Valore minimo
T12	Fascia: T1 = fascia 1 T2 = fascia 2	prog	Pagina di programmazione
dem	Valore della Massima Domanda di Potenza Attiva	ſ	Menu di programmazione: non bloccato bloccato da password
max	Valore massimo	(((•	Comunicazione RS485 attiva

4.7. INDICATORI A LED

- ✓ II led CPU lampeggia ad indicare che CVM/E3 è acceso
- ✓ II led USCITA indica che l'uscita digitale è attiva, in modalità allarmi oppure come impulso proporzionale all'energia conteggiata

4.8. INGRESSO DIGITALE

CVM/E3 dispone di un ingresso digitale (terminali S e 9) che può essere configurato come stato logico ON/OFF o come selettore della fascia tariffaria di riferimento.

In configurazione come stato logico, il display mostra lo stato ON/OFF dell'ingresso. Per dettagli, vedi il capitolo 5.4 e 6.18.

Premi Premi per visualizzare lo stato dell'ingresso digitale; per dettagli, vedi il capitolo 5.4 e 6.18.

La fascia tariffaria si determina in funzione della seguente combinazione di stato degli ingressi digitali I1 e I2.

Ingresso IN1		Fascia Tx
Stato logico	Selezione	
ingresso	fascia	
Х		T1
	0	T1
	1	T2

4.9. USCITA DIGITALE

CVM/E3 dispone di 1 **uscita digitale** a transistor NPN opto-isolata (terminali 7 e 8). Per dettagli, vedi il capitolo 5.4 e 6.17.

Premi Premi per visualizzare lo stato dell'uscita d'allarme. Per dettagli, vedi il capitolo 5.4 e 6.17.

5. VISUALIZZAZIONE

CVM/E3 prevede due profili operativi di visualizzazione:

- ✓ analyzer: funzionalità come analizzatore di rete standard
- ✓ e3: funzionalità come valutatore dell'efficienza energetica

La modalità predefinita è di tipo **e3**; premi e per cambiare il profilo operativo di riferimento.

5.1. PROFILO ANALYZER (ANALIZZATORE DI RETE)

Il profilo di visualizzazione è segnalato dalla relativa icona sul display. Il profilo analyzer prevede 15 pagine di visualizzazione standard più le pagine della armoniche di V e I di ogni fase, fino al 31° ordine. Utilizza i tasti

Il simbolo inst indica c he i valori a display sono quelli reali ed istantanei.

Pagina di visualizzazione	Parametri elettrici
v ⁸ ^{L1} 229.7 inst ^{L2} 235.5 v ^{L3} 24 1.5	Tensione fase-neutro L1 Tensione fase-neutro L2 Tensione fase-neutro L3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tensione fase-fase L1-L2 Tensione fase-fase L2-L3 Tensione fase-fase L3-L1
v ⁸ 11 235.5 [™] 111 408.0 v 111 v 112 v 112 v 112 v	Tensione media fase-neutro Tensione media fase-fase Frequenza
 ^{L1} 525.3 inst ^{L2} 47.82 A ^{L3} 42.5 1 	Corrente L1 Corrente L2 Corrente L3
• ^{8 L1} / 154 kW inst ^{L2} / 1093	Potenza Attiva L1 Potenza Attiva L2 Potenza Attiva L3

Pagina di visualizzazione	Parametri elettrici
▼ ^{8 L1} /2.09 inst ^{L2} / /28 kVA ● ^{L3} /0.30	Potenza Apparente L1 Potenza Apparente L2 Potenza Apparente L3
▼8 L1 3.73 inst L2 0.00 ↓ L3 4.40 kvar [⊥]	Potenza Induttiva L1 Potenza Induttiva L2 Potenza Induttiva L3
$ \begin{array}{c c} $	Potenza Capacitiva L1 Potenza Capacitiva L2 Potenza Capacitiva L3
• ⁸]] ,] _k w [™] inst]] 2 kVA • ¹ .] [] _k var [⊥]	Potenza Attiva di sistema III Pot. Apparente di sistema III Pot. Induttiva di sistema III
• ⁸ T 2]]]] _k w [™] inst]] 5 kVA • 1 L 2 L 1 L kvar₀	Potenza Attiva di sistema III Pot. Apparente di sistema III Pot. Capacitiva di sistema III
 ⁹ L¹ ΩΩΩΩ ¹ ¹ ² ΩΩΩΠ ¹ ¹	Cosfì L1 Cosfì L2 Cosfì L3
v ⁸ L1 0.95 inst ^{L2} 0.95 ^p ^F ^{L3} 0.89	Fattore di Potenza L1 Fattore di Potenza L2 Fattore di Potenza L3
т2 inst 0.94 РF Сос φ	Fattore di Potenza di sistema III Cosfì di sistema III

Pagina di visualizzazione	Parametri elettrici
• ^{8 L1} <i>1,2</i> ^{THD%} inst ^{L2} <i>2,0</i> v • ^{L3} 0.8	THD% di Tensione L1 THD% di Tensione L2 THD% di Tensione L3
$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 \\ 1 & 1 \\ 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 $	THD% di Corrente L1 THD% di Corrente L2 THD% di Corrente L3

È inoltre possibile visualizzare:

- Valori massimi
- Valori minimi
- ✓ Valori di Massima Domanda di Potenza
- ✓ Valori delle Componenti Armoniche

5.1.1. Valori massimi

Per visualizzare i valori massimi dei parametri presenti a display, premi il tasto per almeno 2 secondi; i valori rimangono a display per 10 secondi.

Premi Coper visualizzare i valori massimi degli altri parametri.

Il display mostra anche l'indicatore max.

Dopo 30 secondi il display ritorna ai valori istantanei.

Per il reset dei valori massimi, vedi il capitolo 6.10.

5.1.2. Valori minimi

Per visualizzare i valori minimi dei parametri presenti a display, premi il tasto per almeno 2 secondi; i valori rimangono a display per 10 secondi.

Premi Co per visualizzare i valori minimi degli altri parametri.

Il display mostra anche l'indicatore min.

Dopo 30 secondi il display ritorna ai valori istantanei.

Per il reset dei valori minimi, vedi il capitolo 6.10.

5.1.3. Massima Domanda di Potenza

CVM/E3 calcola i valori di Massima Domanda in funzione dei seguenti parametri istantanei:

- Corrente di ogni fase
- Potenza Attiva trifase
- Potenza Apparente trifase
- Potenza Induttiva trifase
- Potenza Capacitiva trifase

Questi valori possono essere visualizzati premendo contemporaneamente i tasti 📰 🔊 per almeno 2 secondi.

Il display visualizza l'icona dem.

Premi Co per visualizzare gli altri valori di Massima Domanda.

Per il reset dei valori di Massima Domanda, vedi il capitolo 6.9.

5.1.4. Analisi armonica

Sul display di CVM/E3 è possibile visualizzare il livello delle singole Componenti Armoniche di Tensione e Corrente, per ogni singola fase, fino al 30° ordine.

La configurazione predefinita di CVM/E3 prevede l'analisi armonica disabilitata; per abilitarla vedi il capitolo 6.12.

Per una corretta valutazione dei contributi armonici, è necessario che i segnali in misura abbiamo un valore sufficientemente ampio; per le Componenti Armoniche di Tensione tale limite minimo è 20V mentre per le Componenti Armoniche di Corrente il limite minimo è di 200mA.

Diversamente la misura delle Componenti Armoniche è soppressa a ZERO.

Dopo aver visualizzato la prima pagina, si possono scorrere le pagine di visualizzazione delle Componenti Armoniche premendo il tasto .

I valori armonici sono rappresentati in questo modo; questa pagina visualizza le Componenti Armoniche di Tensione di 15° ordine.

ordine H15

Premi Der visualizzare i valori delle altre Componenti Armoniche.

Premi per passare dalle Componenti Armoniche di Tensione a quelle di Corrente e per poi ritornare alla pagina iniziale dei valori istantanei.

5.1.5. Rilevazione della connessione e della sequenza delle fasi

✓ Connessione non corretta o non presente

CVM/E3 è in grado di rilevare eventuali errate connessioni o connessioni mancanti sugli ingressi di tensione.

In tal caso lo strumento visualizza 0 (zero) in corrispondenza della fase che presenta un valore inferiore al 50% della fase a valore maggiore.

✓ Errata connessione della sequenza delle fasi

CVM/E3 è in grado di rilevare eventuali errate connessioni sugli ingressi di tensione, in relazione alla sequenza delle fasi.

In altre parole lo strumento può accertare la corretta sequenza delle fasi L1, L2, L3 connesse rispettivamente sui morsetti di ingresso 10, 11 e 12.

In caso di errore, le icone L1, L2 ed L3 lampeggiano.

Tramite interfaccia RS485 è inoltre possibile identificare quale errore di cablaggio è stato commesso (vedi capitolo 7.3.6).

NOTA:

La funzione di controllo della sequenza delle fasi è abilitata unicamente per i circuiti di misura **4-3Ph, 3-3Ph, 3-Aron** e **3-2Ph.**

5.2. PROFILO e3 (VALUTATORE DI EFFICIENZA ENERGETICA)

Il profilo di visualizzazione **e3** è segnalato dalla relativa icona sul display.

Il display mostra inoltre il tipo di Energia visualizzata:

- L'impianto sta assorbendo Potenza/Energia
- L'impianto sta producendo Potenza/Energia

La pressione prolungata (>3sec) di visualizza i valori di produzione/generazione; tali valori riportano il segno negativo "meno" (-). La pressione prolungata (>3sec) di ritorna ai valori di assorbimento/consumo.

NOTA: Configurando la misura su 2 quadranti, lo strumento visualizza unicamente i valori di assorbimento/consumo.

Utilizza i tasti e (pressione breve) per scorrere le diverse pagine di visualizzazione.

Pagina di visualizzazione	Parametri elettrici
ず [®] 00000 км. [≖] 05878 ∙ 646	Energia Attiva trifase totale ⁽²⁾ (kWh)
^{₹8} 00000 [™] 07630. kvah • 570	Energia Apparente trifase totale ⁽²⁾ (kVAh)
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Energia Induttiva trifase totale ⁽²⁾ (kvarLh)
• ⁸ 00000 [™] 00406. • 938 _{kvar₀h}	Energia Capacitiva trifase totale ⁽²⁾ (kvarCh)
₽ ⁹ 00058. ₽ 7864 ^{cost}	Costo totale ⁽²⁾ (Cost)
, [•] ⁸ 00058. , 7864 ^{cost}	Emissioni CO2 totali ⁽²⁾ (kgCO2)
• • •	Ore operative totali ⁽²⁾ (hours)

Pagina di visualizzazione	Parametri elettrici
₩h	
05010.	Energia Attiva trifase
SY6	Fascia 11 (KVVN)
<mark>•8 ПОООО</mark> Ш	
07530, KVAH	Energia Apparente trifase
• 5 IO	Fascia T1 (kVAh)
<mark>. 8 ПОЛОО Ш</mark>	
00733.	Energia Induttiva trifase
	Fascia T1 (kvarLh)
00 16.	Energia Capacitiva trifase
• 9 10 Mkvar _c h	Fascia T1 (kvarCh)
▼ 8 e ³ T1	
00050.	Costo Fascia T1 (Cost)
● /05 / ^{cost}	
▼8 e³T1	
00111	Emissioni CO2
• 5720 ^{kgCO2}	Fascia T1 (kgCO2)
▼ 8 e³ T1	
	Ore operative
•°	Fascia T1 (hours)
• 8 • ³ T 2 00000 kWh	
DC I 20	Energia Attiva trifase
• <u>645</u>	Fascia T2 (kWh)
ОБ 13.5 • • • • • • • • • • • • •	Ore operative Fascia T1 (hours) Energia Attiva trifase Fascia T2 (kWh)

(2) Totale = Fascia T1 + Fascia T2

Le icone T1 e T2 sul display (lampeggianti) identificano le due fasce tariffarie disponibili su CVM/E3.

Quando il valore visualizzato si riferisce ai valori totali, le icone sono spente.

5.3. PAGINE DELLE INFORMAZIONI

Premi contemporaneamente 🗹 🗐 Ď per accedere alle pagine delle informazioni di sistema dello strumento (versione firmware e matricola).

5.4. PAGINA DELLO STATO DI INGRESSI E USCITE

Premi contemporaneamente K E per accedere alle pagine di visualizzazione dello stato logico di ingressi/uscite digitali.

OUT identifica l'uscita digitale:

0 = uscita disattivata 1 = uscita attiva

IN identifica l'ingresso digitale.

Se configurato come ingresso logico ON/OFF: 0 = ingresso OFF 1 = ingresso ON Se configurato come selezione della fascia tariffaria:

T1 = fascia 1T2 = fascia 2

6. **PROGRAMMAZIONE**

Per entrare in programmazione, premi 🚍 per almeno 3 secondi.

La prima pagina informa se il menu è protetto o meno da password.

- Non protetto: il display visualizza l'icona
- Protetto da password: il display visualizza l'icona In questo caso è necessario inserire la password. (Per dettagli vedi il capitolo 6.21)

SEE PRSS prog

Premi
per modificare la cifra lampeggiante ed utilizza i tasti
e
per cambiare la cifra lampeggiante.

Una volta terminato l'inserimento della password, per validarla e proseguire premi se lampeggia la cifra più a sinistra oppure premi se lampeggia la cifra più a destra.

La password predefinita è 1234

L'accesso alla modifica delle programmazione avviene solo dopo aver digitato la password corretta.

6.1. PRIMARIO DI TENSIONE

L'impostazione iniziale <u>è 0</u>00001.

Per configurare, premi 🔳 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto 🔳 incrementa la cifra lampeggiante,

il tasto > cambia la cifra lampeggiante.

Per confermare premi nuovamente e per 3 secondi; l'icona **prog** torna accesa fissa.

Nel caso in cui venga configurato un valore fuori portata, tale valore viene resettato e si mantiene salvato il valore precedentemente salvato.

Valore Massimo: 599999 Valore Minimo: 000001 La formula Prim-V / Sec-V deve essere minore di 1000 La formula Prim-V / Sec-V * Prim-I deve essere minore di 300.000

Premi Der proseguire.

6.2. SECONDARIO DI TENSIONE

SEE SEcU пп і prog

L'impostazione iniziale <u>è 0</u>01.

Per configurare, premi 🔳 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto 🚍 incrementa la cifra lampeggiante,

il tasto 🔀 cambia la cifra lampeggiante.

Per confermare premi nuovamente e per 3 secondi; l'icona **prog** torna accesa fissa.

Valore Massimo: 999

Valore Minimo: 001

La formula Prim-V / Sec-V deve essere minore di 1000

La formula Prim-V / Sec-V * Prim-I deve essere minore di 300.000

Premi per proseguire.

6.3. PRIMARIO DI CORRENTE

L'impostazione iniziale <u>è 0</u>0005.

Per configurare, premi 🚍 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto 🚍 incrementa la cifra lampeggiante,

il tasto 🗲 cambia la cifra lampeggiante.

Per confermare premi nuovamente premi 3 secondi; l'icona **prog** torna accesa fissa.

Valore Massimo:10000Valore Minimo:00001

La formula Prim-V / Sec-V * Prim-I deve essere minore di 300.000

Premi Der proseguire.

6.4. SECONDARIO DI CORRENTE (solo per CVM/E3/MINI)

L'impostazione iniziale <u>è 5</u>.

Per configurare, premi 🔳 per almeno 3 secondi.

L'icona **prog** lampeggia.

Sono disponibil<u>i 2</u> selezioni: .../1A oppure .../5A.

Utilizza il tasto E per selezionare il secondario dei TA.

La formula Prim-V / Sec-V * Prim-I / Sec-I deve essere minore di 300.000.

Per confermare premi nuovamente epremi accesa fissa.

Premi Der proseguire.

6.5. **QUADRANTI (assorbimento o produzione)**

La misura a 2 quadranti fa riferimento ai soli parametri "in assorbimento" mentre la misura a 4 quadranti consente di discriminare anche i parametri relativi alla "produzione" di energia elettrica.

In linea generale, per una migliore visione dei dati a display, si consiglia di impostare la modalità a 4 quadranti.

Per dettagli tecnici, vedi i capitoli 4.1, 4.2 e 4.3.

Per configurare, premi 🔳 per almeno 3 secondi.

L'icona prog lampeggia; sono disponibili due selezioni: 2 o 4.

Utilizza il tasto per cambiare il valore a display.

Per confermare premi nuovamente e per 3 secondi; l'icona **prog** torna accesa fissa.

Premi per proseguire.

6.6. CONVENZIONE DI MISURA

Per dettagli tecnici sulla modalità di elaborazione e visualizzazione dei parametri, vedi i capitoli 4.1, 4.2 e 4.3.

Per configurare, premi e per almeno 3 secondi.

L'icona **prog** lampeggia; sono disponibili due selezioni: 2 o 4.

Utilizza il tasto per cambiare il valore a display.

Per confermare premi nuovamente per 3 secondi; l'icona **prog** torna accesa fissa.

Premi per proseguire.

6.7. CIRCUITO DI MISURA

Configurazione dello schema di collegamento, in funzione di quanto dettagliato al capitolo 3.2.

Per configurare, premi 🔳 per almeno 3 secondi.

L'icona **prog** lampeggia; utilizza il tasto **e** per selezionare il circuito di misura adeguato tra quelli disponibili:

- ✓ 4-3Ph: trifase a 4 fili
- ✓ 3-3Ph: trifase a 3 fili
- ✓ **3-ARON**⁽³⁾: trifase a 3 fili con connessione ARON
- ✓ **3-2Ph**: bifase a 3 fili
- ✓ **2-2Ph**: monofase a 2 fili con connessione fase-fase

✓ **2-1Ph**: monofase a 2 fili con connessione fase-neutro (3) non disponibile nel modello CVM/E3/MINI/FLEX

Per confermare premi nuovamente per 3 secondi; l'icona **prog** torna accesa fissa.

Premi per proseguire.

6.8. PERIODI DI INTEGRAZIONE PER LA MASSIMA DOMANDA

La funzione di Massima Domanda consente di calcolare la massima richiesta di potenza dell'impianto, su un intervallo di tempo programmabile da 1 a 60 minuti.

Per configurare, premi 🔳 per almeno 3 secondi.

Lampeggiano l'icona **prog** e la cifra 0 (zero) di sinistra.

Il tasto 🔳 incrementa la cifra lampeggiante,

il tasto 🗲 cambia la cifra lampeggiante.

Per confermare premi nuovamente per 3 secondi; l'icona **prog** torna accesa fissa.

Valore Massimo: 60

Valore Minimo: 00 = funzione disabilitata

Premi per proseguire.

6.9. AZZERAMENTO DELLA MASSIMA DOMANDA

Questo passo consente di resettare il valore di Massima Domanda.

Per configurare, premi 🚍 per almeno 3 secondi.

L'icona **prog** lampeggia; sono disponibili due selezioni: **Yes** o **No**.

Utilizza il tasto per cambiare il valore a display.

Per confermare premi nuovamente e per 3 secondi; l'icona **prog** torna accesa fissa.

Al termine del reset la pagina ritorna a visualizzare l'indicazione **NO**.

Premi per proseguire.

6.10. RESET DEI VALORI MINIMI E MASSIMI

Azzeramento dei valori massimi e minimi visualizzati a display in modalità di misura.

Per configurare, premi 🔳 per almeno 3 secondi.

L'icona prog lampeggia; sono disponibili due selezioni: Yes o No.

Utilizza il tasto per cambiare il valore a display.

Per confermare premi nuovamente e per 3 secondi; l'icona **prog** torna accesa fissa.

Al termine del reset la pagina ritorna a visualizzare l'indicazione NO.

Premi Der proseguire.

6.11. RESET DEI CONTATORI DI ENERGIA, COSTO, kgCO2

Azzeramento dei contatori di energia, dei valori economici e dei valori di kgCO2 totalizzati e visualizzati a display in modalità di misura.

Per configurare, premi 🖃 per almeno 3 secondi.

L'icona prog lampeggia; sono disponibili due selezioni: Yes o No.

Utilizza il tasto per cambiare il valore a display.

Per confermare premi nuovamente E per 3 secondi; l'icona **prog** torna accesa fissa.

Al termine del reset la pagina ritorna a visualizzare l'indicazione NO.

Premi Der proseguire.

6.12. ATTIVAZIONE DELLE PAGINE DELLE COMPONENTI ARMONICHE

Questo passaggio del menu consente di attivare la visualizzazione a display di tutte le pagine inerenti la misurazione delle singole Componenti Armoniche di Tensione e Corrente, fino al 31° ordine.
58£ XRr 985 prog

Per configurare, premi 🔳 per almeno 3 secondi.

L'icona **prog** lampeggia; sono disponibili due selezioni: **Yes** o **No**. Utilizza il tasto per cambiare il valore a display.

Per confermare premi nuovamente E per 3 secondi; l'icona **prog** torna accesa fissa.

Premi Der proseguire.

6.13. KgCO2: TASSO DI CONVERSIONE PER PRODUZIONE

Il tasso di emissioni di CO2 si utilizza per calcolare le **non-emissioni** (*in caso di produzione di energia ad emissioni zero*) in atmosfera di CO2, ed è elaborato sulla base del valore medio Europeo, che al momento è pari a circa 0.65kgCO2 per ogni 1 kWh di elettricità prodotta.

Questo tasso è configurabile per ogni fascia oraria T1 (riga centrale) e T2 (riga inferiore).

Per configurare, premi 🖃 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto 🚍 incrementa la cifra lampeggiante,

il tasto 🔁 cambia la cifra lampeggiante.

Per confermare premi nuovamente per 3 secondi; l'icona **prog** torna accesa fissa.

Valore Massimo: 1.9999 Valore Minimo: 0

Premi Premi per proseguire.

6.14. KgCO2: TASSO DI CONVERSIONE PER ASSORBIMENTO

Il tasso di emissioni di CO2 si utilizza per calcolare le **emissioni** in atmosfera di CO2, ed è elaborato sulla base del valore medio Europeo, che al momento è pari a circa 0.65kgCO2 per ogni 1 kWh di elettricità prodotta.

La configurazione è identica a quanto riportato al precedente capitolo 6.13.

6.15. COSTO IN VALUTA: TASSO DI CONVERSIONE PER PRODUZIONE

CVM/E3 è in grado di calcolare il valore in Euro € (o altra valuta) dell'energia prodotta o generata dall'impianto in esame.

Con questo menu si può impostare il valore economico del kWh, in funzione di quanto previsto dal contratto di fornitura elettrica o dall'autorità AEEG.

Questo tasso è configurabile per ogni fascia oraria T1 e T2 (riga centrale) e T2 (riga inferiore).

Per configurare, premi 🚍 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto incrementa la cifra lampeggiante.

Il tasto Cambia la cifra lampeggiante.

Per confermare premi nuovamente per 3 secondi; l'icona **prog** torna accesa fissa.

Valore Massimo: 1.9999 Valore Minimo: 0

Premi Der proseguire.

6.16. COSTO IN VALUTA: TASSO DI CONVERSIONE PER ASSORBIMENTO

CVM/E3 è in grado di calcolare il valore in Euro € (o altra valuta) dell'energia prodotta o generata dall'impianto in esame.

Con questo menu si può impostare il valore economico del kWh, in funzione di quanto previsto dal contratto di fornitura elettrica o dall'autorità AEEG.

La configurazione è identica a quanto riportato al precedente capitolo 6.15.

6.17. CONFIGURAZIONE DELL'USCITA DIGITALE

L'uscita digitale T1 può essere configurata in 2 diverse modalità:

- Allarme ON/OFF
- Uscita impulsiva proporzionale

Tramite questa pagina si definisce la grandezza elettrica di riferimento.

L'elenco dei codici selezionabili è riportato nelle tabelle qui sotto.

Per configurare, premi 🚍 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto incrementa la cifra lampeggiante.

Il tasto cambia la cifra lampeggiante.

L'impostazione 000 significa "allarme disabilitato".

Nel caso in cui venga configurato un valore fuori portata, tale valore viene resettato e si mantiene salvato il valore precedentemente salvato.

Per confermare premi nuovamente e per 3 secondi; l'icona **prog** torna accesa fissa.

Parametro	Fase	Codice	Fase	Codice	Fase	Codice	Fase	Codice
Tensione fase-neutro	L1	01	L2	09	L3	17	-	-
Corrente	L1	02	L2	10	L3	18	-	-
Potenza Attiva	L1	03	L2	11	L3	19		25
Potenza Induttiva	L1	04	L2	12	L3	20		26
Potenza Capacitiva	L1	05	L2	13	L3	21		27
Potenza Apparente	L1	06	L2	14	L3	22		28
Fattore di Potenza	L1	07	L2	15	L3	23		29
Cosfi Ø	L1	08	L2	16	L3	24		30
THD – V %	L1	36	L2	37	L3	38	-	-
THD – I %	L1	39	L2	40	L3	41	-	-
Tensione fase-fase	L1/2	32	L2/3	33	L3/1	34	-	-
Frequenza	-	31	-	-	-	-	-	-
Massima Domanda di Corrente	L1	45	L2	46	L3	47	-	-
Massima Domanda di Potenza Attiva	-	-	-	-	-	-		42
Massima Domanda di Potenza Apparente	-	-	-	-	-	-		43
Massima Domanda di Potenza Induttiva	-	-	-	-	-	-		132
Massima Domanda di Potenza Capacitiva	-	-	-	-	-	-		133

In aggiunta, sono disponibili altre grandezze elettriche relative ai parametri delle 3 fasi, e che sono valutati in simultanea tramite operazione logica OR; ciò significa che l'allarme si attiva (il transistor cambia stato) anche quando una sola delle 3 grandezze elettriche è "vera".

Parametro	Codice
Tensione fase-neutro	200
Corrente	201
Potenza Attiva	202
Potenza Induttiva	203
Potenza Capacitiva	204
Fattore di Potenza	205
Tensione fase-fase	206
THD – V %	207
THD – I %	208
Potenza Apparente	209

I parametri per la configurazione come uscita impulsiva proporzionale sono:

Parametro	Tariffa	Codice	Tariffa	Codice	Tariffa	Codice
Energia Attiva assorbita	T1	49	T2	70	totale	112
Energia Attiva generata	T1	59	T2	80	totale	122
Energia Induttiva assorbita	T1	51	T2	72	totale	114
Energia Induttiva generata	T1	61	T2	82	totale	124
Energia Capacitiva assorbita	T1	53	T2	74	totale	116
Energia Capacitiva generata	T1	63	T2	84	totale	126
Energia Apparente assorbita	T1	55	T2	76	totale	118
Energia Apparente generata	T1	65	T2	86	totale	128

Premi Per proseguire.

6.17.1. Soglia su un valore massimo

L'allarme si attiva per valori superiori al valore massimo.

Per configurare, premi 🚍 per almeno 3 secondi.

Lampeggiano l'icona **prog** e la cifra 0 (zero) di sinistra.

Il tasto incrementa la cifra lampeggiante.

Il tasto Cambia la cifra lampeggiante.

NOTE:

- CVM/E3 consente di configurare valori negativi. Devi posizionarti sulla cifra più a sinistra e incrementarla oltre il valore 9, facendo comparire il segno – (meno)
- Per configurare valori di allarme relativi a parametri in condizione di produzione di energia (valori negativi), è necessario anteporre il segno – (meno) al valore numerico di soglia. Ad esempio, per configurare l'allarme tra 2kW e 1kW come produzione, è necessario configurare il valore massimo a -1kW e il valore minimo a -2kW.

Premi ancora 🚍 per 3 secondi per confermare e Ď per proseguire.

Premi Der proseguire.

6.17.2. Soglia su un valore minimo

L'allarme si attiva per valori inferiori al valore minimo.

La configurazione è identica a quanto riportato al precedente capitolo 6.17.1.

Premi per proseguire.

6.17.3. Ritardo sull'attivazione dell'uscita

Il tempo di ritardo in attivazione è espresso in secondi.

Per configurare, premi 🚍 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto incrementa la cifra lampeggiante.

Il tasto > cambia la cifra lampeggiante.

Per confermare premi nuovamente e per 3 secondi; l'icona **prog** torna accesa fissa.

Valore Massimo: 999 Valore Minimo: 0

Premi per proseguire.

6.17.4. Isteresi per la disattivazione dell'uscita

L'isteresi è la differenza, espressa in percentuale, tra il valore di attivazione ed il valore di disattivazione della condizione di allarme. Su un valore massimo di allarme di 100, una isteresi 10 significa che l'allarme si disattiva sotto il valore 90.

Per configurare, premi 🔳 per almeno 3 secondi.

Lampeggiano l'icona **prog** e la cifra 0 (zero) di sinistra.

Il tasto incrementa la cifra lampeggiante.

Il tasto cambia la cifra lampeggiante.

Per confermare premi nuovamente e per 3 secondi; l'icona **prog** torna accesa fissa.

Valore Massimo: 99 Valore Minimo: 0

Premi 🕑 per proseguire.

6.17.5. Interblocco dello stato di uscita

Questa funzione consente di mantenere attivato l'allarme nonostante la condizione di attivazione sia estinta.

Per configurare, premi 🚍 per almeno 3 secondi.

L'icona prog lampeggia; sono disponibili due selezioni: Yes o No.

Utilizza il tasto per cambiare il valore a display.

Per confermare premi nuovamente E per 3 secondi; l'icona **prog** torna accesa fissa.

Premi Der proseguire.

NOTA: se CVM/E3 viene resettato, l'allarme scompare e l'uscita ritorna allo stato iniziale (aperto o chiuso secondo programmazione).

6.17.6. Ritardo sulla disattivazione dell'uscita

Il ritardo in disattivazione è espresso in secondi.

La configurazione è identica a quanto riportato al precedente capitolo 6.17.3.

Premi Der proseguire.

6.17.7. Stato iniziale del contatto di uscita

NO = normalmente aperto

NC = normalmente chiuso

Per configurare, premi 🚍 per almeno 3 secondi.

L'icona prog lampeggia; sono disponibili due selezioni: NC o NO.

Utilizza il tasto per cambiare il valore a display.

Premi ancora 🚍 per 3 secondi per confermare e 💟 per proseguire.

6.17.8. Peso energetico dell'impulso proporzionale di uscita (kWh)

Per configurare, premi 🚍 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto 📃 incrementa la cifra lampeggiante.

Il tasto > cambia la cifra lampeggiante.

Valore	Massimo:	999.99kWh
Valore	Minimo:	000.01kWh

Esempio:

per configurare 500Wh/impulso: 000.500 per configurare 1.5kWh/impulso: 001.500

Premi ancora 🚍 per 3 secondi per confermare e 💟 per proseguire.

6.17.9. Ampiezza dell'impulso proporzionale di uscita

Per ampiezza dell'impulso si intende la durata per la quale l'uscita digitale rimane allo stato logico alto **HI**.

Per configurare, premi per almeno 3 secondi. Lampeggiano l'icona **prog** e la cifra 0 (zero) di sinistra. Il tasto incrementa la cifra lampeggiante.

Il tasto 🔁 cambia la cifra lampeggiante.

Valore Massimo:500 millisecondiValore Minimo:30 millisecondi

Nel caso in cui venga configurato un valore fuori portata, tale valore viene resettato e si mantiene salvato il valore precedentemente salvato.

Premi ancora 🚍 per 3 secondi per confermare e 💟 per proseguire.

6.18. CONFIGURAZIONE DELL'INGRESSO DIGITALE

L'ingresso digitale può essere configurato come stato logico ON/OFF o come selettore della fascia tariffaria di riferimento.

Per dettagli vedi il capitolo 4.8.

Per configurare, premi 🚍 per almeno 3 secondi.

L'icona **prog** lampeggia; sono disponibili due selezioni: premi per modificare **LOGIC** in **TARIFF** e viceversa.

Premi ancora 🚍 per 3 secondi per confermare e 💟 per proseguire.

6.19. RETRO-ILLUMINATORE

Il valore riportato su questa pagina indica il tempo, espresso in secondi, per cui il retro-illuminatore rimane acceso dopo l'ultima operazione a tastiera.

Per configurare, premi 🚍 per almeno 3 secondi.

Lampeggiano l'icona **prog** e la cifra 0 (zero) di sinistra.

Il tasto 📃 incrementa la cifra lampeggiante.

Il tasto > cambia la cifra lampeggiante.

Valore Massimo:999 secondiValore Minimo:00 = retro-illuminatore sempre acceso

Nel caso in cui venga configurato un valore fuori portata, tale valore viene resettato e si mantiene salvato il valore precedentemente salvato.

Premi ancora 🚍 per 3 secondi per confermare e Ď per proseguire.

6.20. COMUNICAZIONE RS485

Da questa prima pagina è possibile definire il protocollo di comunicazione.

Per configurare, premi 🚍 per almeno 3 secondi.

L'icona **prog** lampeggia, sono disponibili due selezioni: premi per selezionare **nodb** (**Modbus**) o **bAcn** (**BACnet**).

Premi ancora 🚍 per 3 secondi per confermare e 💟 per proseguire.

CVM/E3 si riavvia in automatico nel caso in cui vengano modificati i parametri dell'interfaccia RS485.

6.20.1. Velocità di trasmissione Modbus

Per configurare, premi 🔳 per almeno 3 secondi.

L'icona **prog** lampeggia, sono disponibili quattro selezioni: premi e per selezionare **9600**, **19200**, **38400**, **57600**.

Premi ancora 🚍 per 3 secondi per confermare e ⋗ per proseguire.

6.20.2. Identificativo dispositivo Modbus

Per configurare, premi 🔳 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto 📃 incrementa la cifra lampeggiante.

Il tasto > cambia la cifra lampeggiante.

È possibile configurare un identificativo compreso tra 000 e 255

Nel caso in cui venga configurato un valore fuori portata, tale valore viene resettato e si mantiene salvato il valore precedentemente salvato.

Premi ancora 🚍 per 3 secondi per confermare e Ď per proseguire.

6.20.3. Parità del messaggio Modbus

Per configurare, premi Eper almeno 3 secondi.

L'icona **prog** lampeggia, sono disponibili tre selezioni: premi e per selezionare **NO**, EVEN e ODD.

Premi ancora 🚍 per 3 secondi per confermare e ▶ per proseguire.

6.20.4. Lunghezza del dato del messaggio Modbus

Per configurare, premi 🔳 per almeno 3 secondi.

L'icona **prog** lampeggia, sono disponibili due selezioni: premi en per selezionare **7** o **8**.

Premi ancora 🚍 per 3 secondi per confermare e 💟 per proseguire.

6.20.5. Bit di stop del messaggio Modbus

Per configurare, premi eper almeno 3 secondi.

L'icona **prog** lampeggia, sono disponibili due selezioni: premi per selezionare **1** o **2**.

Premi ancora 🚍 per 3 secondi per confermare e Ď per proseguire.

6.20.6. Velocità di trasmissione con Protocollo BACnet

Per configurare, premi eper almeno 3 secondi.

L'icona **prog** lampeggia, sono disponibili tre selezioni: premi e per selezionare **9600**, **19200 o 38400**.

Premi ancora 🚍 per 3 secondi per confermare e Ď per proseguire.

6.20.7. Identificativo dispositivo per protocollo BACnet

Per configurare, premi 🔳 per almeno 3 secondi.

Lampeggiano l'icona **prog** e la cifra 0 (zero) di sinistra.

Il tasto 📃 incrementa la cifra lampeggiante.

Il tasto ≥ cambia la cifra lampeggiante.

Valore Massimo: 99999 Valore Minimo: 0

Nel caso in cui venga configurato un valore fuori portata, tale valore viene resettato e si mantiene salvato il valore precedentemente salvato.

Premi ancora 🚍 per 3 secondi per confermare e 💌 per proseguire.

6.20.8. Indirizzo MAC per protocollo BACnet

Per configurare, premi 🚍 per almeno 3 secondi.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto 🚍 incrementa la cifra lampeggiante.

Il tasto ≥ cambia la cifra lampeggiante.

Valore Massimo: 127 Valore Minimo: 0

Nel caso in cui venga configurato un valore fuori portata, tale valore viene resettato e si mantiene salvato il valore precedentemente salvato.

Premi ancora E per 3 secondi per confermare e P per proseguire.

6.21. PROTEZIONE DEL MENU DI PROGRAMMAZIONE

Per configurare, premi eper almeno 3 secondi.

Il display visualizza la pagina successiva di inserimento della password.

Lampeggiano l'icona prog e la cifra 0 (zero) di sinistra.

Il tasto 🔳 incrementa la cifra lampeggiante.

Il tasto 🔁 cambia la cifra lampeggiante.

La password predefinita è 1234

La password predefinita è modificabile unicamente tramite comando Modbus (vedi capitolo 7.3.7.14) Premi e per 3 secondi per validare la password; l'icona **prog** torna accesa fissa.

Dopo aver validato la password, utilizza il tasto per selezionare una delle due opzioni previste:

- UnLOC: non protetto
 Il display visualizza l'icona de ed è quindi possibile visualizzare e modificare qualsiasi configurazione disponibile nel menu
- LOC: protetto da password Il display visualizza l'icona
 , è possibile visualizzare le configurazioni presenti sull'unità CVM/E3 ma non è possibile modificare nessuna opzione.

Premi ancora per 3 secondi per confermare; l'icona **prog** viene rimossa dalla visualizzazione a display.

7. COMUNICAZIONE PER ACQUISIZIONE DATI

CVM/E3 dispone di una interfaccia seriale RS485 per la trasmissione dei dati di misura ad un sistema di acquisizione e supervisione esterno nonché per la configurazione remota della programmazione.

L'interfaccia RS485 supporta 2 protocolli di comunicazione standard commerciali: Modbus-RTU[®] e BACnet.

La configurazione tramite tastiera è dettagliata al capitolo 6.20.

7.1. CONNESSIONI

Il bus RS485 deve essere realizzato utilizzando un cavo di comunicazione twistato e schermato (3 conduttori) dotato delle seguenti caratteristiche minime: **flessibile, categoria 5, 4 conduttori Ø 0.25 mm².**

Le reti RS485 supportano fino a 32 dispositivi; la distanza massima tra il primo e l'ultimo dispositivo connesso in bus, è di 1200 metri.

È possibile estendere questa distanza utilizzando l'amplificatore/ripetitore CVM/RS2RS; per ridurre i disturbi indotti, si consiglia di porre a terra lo schermo del cavo, all'inizio o al termine del bus dati.

La rete RS485 viene generalmente convertita su una rete di trasmissione compatibile con i sistemi di acquisizione e/o computer maggiormente diffusi, ovvero su rete LAN-Ethernet, USB o Profibus.

Per reti LAN-Ethernet si consiglia l'utilizzo del convertitore TCP1RSP.

7.2. PROTOCOLLO MODBUS RTU

CVM/E3 utilizza il formato domanda/risposta del protocollo Modbus RTU[®] (Remote Terminal Unit).

http://www.modbus.org/specs.php

Function 0x03 and 0x04. Reading integer registers.Function 0x05. Writing a relay.Function 0x10. Writing multiple registers.

7.2.1.- READING EXAMPLE : Funtion 0x04.

Question: Instantaneous value of the phase voltage of L1

Address	Function	Initial register	Initial No. of registers	
0A	04	0000	0002	70B0

Address: 0A, Peripheral number: 10 in decimals. Function: 04, Read function. Initial Register: 0000, register on which the reading will start. No. of registers: 0002, number of registers read. CRC: 70B0, CRC Character. **Response:**

Address	Function	No. of Bytes	Register No. 1	Register No. 2	CRC
0A	04	04	0000	084D	8621

Address: 0A, Responding peripheral number: 10 in decimals. Function: 04, Read function. No. of bytes: 04, No. of bytes received. Register: 0000084D, value of the phase voltage of L1: VL1 x 10 : 212.5V CRC: 8621, CRC Character.

Note : Every Modbus frame has a maximum limit of 20 variables (40 logs).

7.2.2.- WRITING EXAMPLE : Funtion 0x05.

Question: Deleting maximum and minimum values.

Address	Function	Initial Register	Value	CRC
0A	05	0834	FF00	CEEF

Address: 0A, Peripheral number: 10 in decimal.

Function: 05, Read function.

Initial register: 0834, register of the parameter for deleting maximum and minimum values.

Value: FF00, we indicate that we want to delete the maximum and minimum values. CRC: CEEF, CRC character.

Response:

Address	Function	Initial register	Value	CRC
0A	05	0834	FF00	CEEF

7.3. COMANDI MODBUS

CVM/E3 dispone di diverse mappe dei registri Modbus in funzione dei parametri istantanei di misura, dei valori di energia e dei valori delle componenti armoniche. Tuttavia, le varie mappe presentano le medesime identiche funzionalità.

- Mappa 1: utilizza gli stessi indirizzi di base della gamma di analizzatori CVM-MINI, con in aggiunta gli indirizzi relativi alle misure aggiuntive specifiche di CVM/E3
- Mappa 2: utilizza gli stessi indirizzi della gamma di analizzatori CVM/C10 ad eccezione di 3 parametri.

CVM/E3 e CVM/C10 sono quindi quasi completamente intercambiabili senza necessità di apportare modifiche ai comandi di interfacciamento Modbus

7.3.1. MEASUREMENT VARIABLES

All the adresses of Modbus memory are in Hexadecimal. For these variables is implemented the **Function 0x03** and **0x04**.

Map 1								
Parameter	Symbol	Instantaneous	Maximum	Minimum	Units			
L1 Phase voltage	V 1	00-01	60-61	C0-C1	V x 10			
L1 Current	A 1	02-03	62-63	C2-C3	mA			
L1 Active Power	kW 1	04-05	64-65	C4-C5	W			
L1 Inductive Power	kvarL 1	12C-12D	13E-13F	150-151	var			
L1 Capacitive Power	kvarC 1	12E-12F	140-141	152-153	var			
L1 Apparent Power	kVA 1	4A-4B	AA-AB	10A-10B	VA			
L1 Power Factor	PF 1	08-09	68-69	C8-C9	x 100			
Cos φ L1	Cos φ 1	130-131	142-143	154-155	x 100			
L2 Phase voltage	V 2	0A-0B	6A-6B	CA-CB	V x 10			
L2 Current	A 2	0C-0D	6C-6D	CC-CD	mA			
L2 Active Power	kW 2	0E-0F	6E-6F	CE-CF	W			
1.2 Inductive Power	kvarl 2	132-133	144-145	156-157	var			
12 Capacitive Power	kvarC 2	134-135	146-147	158-159	var			
1.2 Apparent Power	kVA 2	4C-4D	AC-AD	10C-10D	VA			
12 Power Factor	PF 2	12-13	72-73	D2-D3	x 100			
$\cos \omega / 2$	$Cos \omega 2$	136-137	148-149	15A-15B	x 100			
1 3 Phase voltage	V 3	14-15	74-75	D4-D5	V x 10			
1.3 Current	↓ 3 3	16-17	76-77		m A			
13 Active Power	kW 3	18-19	78-79	00-07				
L3 Inductive Power	kvarl 3	138-139	14A-14B	15C-15D	var			
	kvarC 3	134-13B	14A-14D	15E-15E	var			
13 Apparent Power				10E 10E				
L3 Power Eactor	DE 3				v 100			
				160 161	x 100			
Three phase Active Rower					× 100			
Three phase inductive power	kvort III	1 <u></u> ⊆-1F 20.21	90.91		vv			
Three phase Conscitive Dower		20-21	00-01		Var			
Three phase Capacitive Power		42-23	02-03					
Three phase Apparent power		42-43	AZ-AJ		VA x100			
Three-phase Power Factor		20-27	00-07	E0-E7	x100			
Three-phase Cos φ		24-20	04-00	E4-E0	X100			
	HZ	28-29	00-09	E8-E9	H2 X 100			
L1-L2 Voltage	V12	2A-2B	8A-8B	EA-EB	V X 10			
L2-L3 Voltage	V23	20-2D	8C-8D	EC-ED	V X 10			
		2E-2F	8E-8F	EE-EF	V X 10			
	%THDV1	30-31	90-91	F0-F1	% X 10			
% L2 voltage THD	%THDV2	32-33	92-93	F2-F3	% x 10			
% L3 voltage THD	%THDV3	34-35	94-95	F4-F5	% x 10			
% L1 current THD	%THDI1	36-37	96-97	F6-F7	% x 10			
% L2 current THD	%THDI2	38-39	98-99	F8-F9	% x 10			
% L3 current THD	%THDI3	3A-3B	9A-9B	FA-FB	% x 10			
Maximum demand kW III	Md(Pd)	162-163	16A-16B	-	W			
Maximum demand kVA III	Md(Pd)	164-165	16C-16D	-	VA			
Maximum demand kvarL III	Md(Pd)	166-167	16E-16F	-	var			
Maximum demand kvarC III	Md(Pd)	168-169	170-171	-	var			
Maximum demand I L1	Md(Pd)	44-45	A4-A5	-	mA			
Maximum demand I L2	Md(Pd)	52-53	B2-B3	-	mA			
Maximum demand LL3	Md(Pd)	54-55	B4-B5	-	mA			

Table 20: Modbus	memory N	lan 1	Measurement	variables
Table 20. Moubus	memory n	map I.	measurement	variables

Map 2							
Parameter	Symbol	Instantaneous	Maximum	Minimum	Units		
L1 Phase voltage	V 1	1000-1001	1106-1107	1164-1165	V x 10		
L1 Current	A 1	1002-1003	1108-1109	1166-1167	mA		
L1 Active Power	kW 1	1004-1005	110A-110B	1168-1169	W		
L1 Inductive Power	kvarL 1	1006-1007	110C-110D	116A-116B	var		
L1 Capacitive Power	kvarC 1	1008-1009	110E-110F	116C-116D	var		
L1 Apparent Power	kVA 1	100A-100B	1110-1111	116E-116F	VA		
L1 Power Factor	PF 1	100C-100D	1112-1113	1170-1171	x 100		
Cos φ L1	Cos φ 1	100E-100F	1114-1115	1172-1173	x 100		
L2 Phase voltage	V 2	1010-1011	1116-1117	1174-1175	V x 10		
L2 Current	A 2	1012-1013	1118-1119	1176-1177	mA		
L2 Active Power	kW 2	1014-1015	111A-111B	1178-1179	W		
L2 Inductive Power	kvarL 2	1016-1017	111C-111D	117A-117B	var		
L2 Capacitive Power	kvarC 2	1018-1019	111E-111F	117C-117D	var		
L2 Apparent Power	kVA 2	101A-101B	1120-1121	117E-117F	VA		
L2 Power Factor	PF 2	101C-101D	1122-1123	1180-1181	x 100		
Cos φ L2	Cos φ 2	101E-101F	1124-1125	1182-1183	x 100		
L3 Phase voltage	V 3	1020-1021	1126-1127	1184-1185	V x 10		
L3 Current	A 3	1022-1023	1128-1129	1186-1187	mA		
L3 Active Power	kW 3	1024-1025	112A-112B	1188-1189	W		
L3 Inductive Power	kvarL 3	1026-1027	112C-112D	118A-118B	var		
L3 Capacitive Power	kvarC 3	1028-1029	112E-112F	118C-118D	var		
L3 Apparent Power	kVA 3	102A-102B	1130-1131	118E-118F	VA		
L3 Power Factor	PF 3	102C-102D	1132-1133	1190-1191	x 100		
Cos φ L3	Cos φ 3	102E-102F	1134-1135	1192-1193	x 100		
Three-phase Active Power	kW III	1030-1031	1136-1137	1194-1195	W		
Three-phase Inductive power	kvarL III	1032-1033	1138-1139	1196-1197	var		
Three-phase Capacitive Power	kvarC III	1034-1035	113A-113B	1198-1199	var		
Three-phase Apparent power	kVA III	1036-1037	113C-113D	119A-119B	VA		
Three-phase Power Factor	PF III	1038-1039	113E-113F	119C-119D	x100		
Three-phase Cos φ	Cos φ III	103A-103B	1140-1141	119E-119F	x100		
L1 Frequency	Hz	103C-103D	1142-1143	11A0-11A1	Hz x100		
L1-L2 Voltage	V12	103E-103F	1144-1145	11A2-11A3	V x 10		
L2-L3 Voltage	V23	1040-1041	1146-1147	11A4-11A5	V x 10		
L3-L1 Voltage	V31	1042-1043	1148-1149	11A6-11A7	V x 10		
% L1 voltage THD	%THDV1	1046-1047	114C-114D	11AA-11AB	% x 10		
% L2 voltage THD	%THDV2	1048-1049	114E-114F	11AC-11AD	% x 10		
% L3 voltage THD	%THDV3	104A-104B	1150-1151	11AE-11AF	% x 10		
% L1 current THD	%THDI1	104C-104D	1152-1153	11B0-11B1	% x 10		
% L2 current THD	%THDI2	104E-104F	1154-1155	11B2-11B3	% x 10		
% L3 current THD	%THDI3	1050-1051	1156-1157	11B4-11B5	% x 10		
Maximum demand kW III	Md(Pd)	1052-1053	1158-1159	-	W		
Maximum demand kVA III	Md(Pd)	1054-1055	115A-115B	-	VA		
Maximum demand kvarL III	Md(Pd)	1200-1201	1204-1205	-	var		
Maximum demand kvarC III	Md(Pd)	1202-1203	1206-1207	-	var		
Maximum demand I L1	Md(Pd)	1058-1059	115E-115F	-	mA		
Maximum demand I L2	Md(Pd)	105A-105B	1160-1161	-	mA		
Maximum demand I L3	Md(Pd)	105C-105D	1162-1163	-	mA		

Table 21: Modbus memory Map 2: Measurement variables

7.3.2. ENERGY VARIABLES

All the adresses of Modbus memory are in Hexadecimal. For these variables is implemented the **Function 0x03** and **0x04**.

Map 1							
Parameter	Symbol	Tariff 1	Tariff 2	Total	Units		
Consumed active energy III (kWh)	kWh III	18C-18D	1 <mark>B6-1</mark> B7	3C-3D	kWh		
Consumed active energy III (Wh)	kWh III	18E-18F	1 <mark>B</mark> 8-1B9	172-173	Wh		
Consumed inductive reactive energy III (kvarhL)	kvarhL III	190-191	1BA-1BB	3E-2F	kvarh		
Consumed inductive reactive energy III (varhL)	kvarhL III	192-193	1BC-1BD	174-175	varh		
Consumed capacitive reactive energy III (kvarhC)	kvarhC III	194-195	1BE-1BF	40-41	kvarh		
Consumed capacitive reactive energy III (varhC)	kvarhC III	196-197	1C0-1C1	176-176	varh		
Consumed apparent energy III (kVAh)	kVAh III	198-199	1C2-1C3	56-57	kVAh		
Consumed apparent energy III (VAh)	kVAh III	19A-19B	1C4-1C5	178-179	VAh		
Consumed CO ₂ emissions	KgCO ₂	19C-19D	1C6-1C7	182-183	x10		
Consumption cost	\$	19E-19F	1C8-1C9	184-185	x10		
Generated active energy III (kWh)	kWh III	1A0-1A1	1CA-1CB	58-59	kWh		
Generated active energy III (Wh)	kWh III	1A2-1A3	1CC-1CD	17A-17B	Wh		
Generated inductive reactive energy III (kvarhL)	kvarhL III	1A4-1A5	1CE-1CF	5A-5B	kvarh		
Generated inductive reactive energy III (varhL)	kvarhL III	1A6-1A7	1D0-1D1	17C-17D	varh		
Generated capacitive reactive energy III (kvarhC)	kvarhC III	1A8-1A9	1D2-1D3	5C-5D	kvarh		
Generated capacitive reactive energy III (varhC)	kvarhC III	1AA-1AB	1D4-1D5	17E-17F	varh		
Generated apparent energy III (kVAh)	kVAh III	1AC-1AD	1D6-1D7	5E-5F	kVAh		
Generated apparent energy III (VAh)	kVAh III	1AE-1AF	1D8-1D9	180-181	VAh		
Generated CO ₂ emissions	KgCO ₂	1B0-1B1	1DA-1DB	186-187	x10		
Generation Cost	\$	1B2-1B3	1DC-1DD	188-189	x10		
Hours per tariff	Hours	1B4-1B5	1DE-1DF	18A-18B	seg		

Table 22: Modbus	memory Map	1: Energy	/ variables

 Table 23: Modbus memory Map 2: Energy variables

Map 2							
Parameter	Symbol	Tariff 1	Tariff 2	Total	Units		
Consumed active energy III (kWh)	kWh III	105E-105F	1088-1089	10DC-10DD	kWh		
Consumed active energy III (Wh)	kWh III	1060-1061	108A-108B	10DE-10DF	Wh		
Consumed inductive reactive energy III (kvarhL)	kvarhL III	varhL III 1062-1063 10		10E0-10E1	kvarh		
Consumed inductive reactive energy III (varhL)	kvarhL III	1064-1065	108E-108F	10E2-10E3	varh		
Consumed capacitive reactive energy III (kvarhC)	kvarhC III	1066-1067	1090-1091	10E4-10E5	kvarh		
Consumed capacitive reactive energy III (varhC)	kvarhC III	1068-1069	1092-1093	10E6-10E7	varh		
Consumed apparent energy III (kVAh)	kVAh III	106A-106B	1094-1095	10E8-10E9	kVAh		

	Map 2							
Parameter	Símbolo	Tariff 1	Tariff 2	Total	Units			
Consumed apparent energy III (VAh)	kVAh III	106C-106D	1096-1097	10EA-10EB	VAh			
Consumed CO ₂ emissions	KgCO₂	106E-106F	1098-1099	10EC-10ED	x10			
Consumption cost	\$	1070-1071	109A-109B	10EE-10EF	x10			
Generated active energy III (kWh)	kWh III	1072-1073	109C-109D	10F0-10F1	kWh			
Generated active energy III (Wh)	kWh III	1074-1075	109E-109F	10F2-10F3	Wh			
Generated inductive reactive energy III (kvarhL)	kvarhL III	1076-1077	10A0-10A1	10F4-10F5	kvarh			
Generated inductive reactive energy III (varhL)	kvarhL III	1078-1079	10A2-10A3	10F6-10F7	varh			
Generated capacitive reactive energy III (kvarhC)	kvarhC III	107A-107B	10A4-10A5	10F8-10F9	kvarh			
Generated capacitive reactive energy III (varhC)	kvarhC III	107C-107D	10A6-10A7	10FA-10FB	varh			
Generated apparent energy III (kVAh)	kVAh III	107E-107F	10A8-10A9	10FC-10FD	kVAh			
Generated apparent energy III (VAh)	kVAh III	1080-1081	10AA-10AB	10FE-10EF	VAh			
Generated CO ₂ emissions	KgCO ₂	1082-1083	10AC-10AD	1100-1101	x10			
Generation Cost	\$	1084-1085	10AE-10AF	1102-1103	x10			
Hours per tariff	Hours	1086-1087	10B0-10B1	1104-1105	seg			

Table 23 (Continuation) : Modbus memory Map 2: Energy variables

Table 24: Modbus memory Map 1 and Map 2 (energy variables per phase).

Map 1 and Map 2							
Parameter	Symbol	L1	L2	L3	Units		
Consumed active energy (kWh) T1	kWh	1400-1401	1460-1461	14C0-14C1	kWh		
Consumed active energy (Wh) T1	kWh	1402-1403	1462-1463	14C2-14C3	Wh		
Consumed inductive reactive energy T1 (kvarhL)	kvarhL	1404-1405	1464-1465	14C4-14C5	kvarh		
Consumed inductive reactive energy T1 (varhL)	kvarhL	1406-1407	1466-1467	14C6-14C7	varh		
Generated active energy T1 (kWh)	kWh	1410-1411	1470-1471	14D0-14D1	kWh		
Generated active energy T1 (Wh)	kWh	1412-1413	1472-1473	14D2-14D3	Wh		
Generated inductive reactive energy T1 (kvarhL)	kvarhL	1414-1415	1474-1475	14D4-14D5	kvarh		
Generated inductive reactive energy T1 (varhL)	kvarhL	1416-1417	1476-1477	14D6-14D7	varh		
Consumed active energy (kWh) T2	kWh	1420-1421	1480-1481	14E0-14E1	kWh		
Consumed active energy (Wh) T2	kWh	1422-1423	1482-1483	14E2-14E3	Wh		
Consumed inductive reactive energy T2 (kvarhL)	kvarhL	1424-1425	1484-1485	14E4-14E5	kvarh		
Consumed inductive reactive energy T2(varhL)	kvarhL	1426-1427	1486-1487	14E6-14E7	varh		
Generated active energy T2 (kWh)	kWh	1430-1431	1490-1491	14F0-14F1	kWh		
Generated active energy T2 (Wh)	kWh	1432-1433	1492-1493	14F2-14F3	Wh		
Generated inductive reactive ener- gyT2(kvarhL)	kvarhL	1434-1435	1494-1495	14F4-14F5	kvarh		
Generated inductive reactive energy T2 (varhL)	kvarhL	1436-1437	1496-1497	14F6-14F7	varh		
Consumed active energy (kWh) Total	kWh	1440-1441	14A0-14A1	1500-1501	kWh		

Map 1 and Map 2								
Parameter	Symbol	L1	L2	L3	Units			
Consumed active energy (Wh) Total	kWh	1442-1443	14A2-14A3	1502-1503	Wh			
Consumed inductive reactive energy To- tal (kvarhL)	kvarhL	1444-1445	14A4-14A5	1504-1505	kvarh			
Consumed inductive reactive energy To- tal (varhL)	kvarhL	1446-1447	14A6-14A7	1506-1507	varh			
Generated active energy Total (kWh)	kWh	1450-1451	14B0-14B1	1510-1511	kWh			
Generated active energy Total (Wh)	kWh	1452-1453	14B2-14B3	1512-1513	Wh			
Generated inductive reactive energy To- tal (kvarhL)	kvarhL	1454-1455	14B4-14B5	1514-1515	kvarh			
Generated inductive reactive energy To- tal (varhL)	kvarhL	1456-1457	14B6-14B7	1516-1517	varh			

Table 24 (Continuation) : Modbus memory Map 1 and Map 2 (energy variables per phase)

7.3.3. VOLTAGE AND CURRENT HARMONICS.

All the adresses of Modbus memory are in Hexadecimal. For these variables is implemented the **Function 0x03** and **0x04**.

		Map 1		
Parameter	Voltage L1	Voltage L2	Voltage L3	Units
Fundamental Harm.	2AE-2AF	2CC-2CD	2EA-2EB	V x 10
2nd Order harmonic	2B0-2B1	2CE-2CF	2EC-2ED	% x 10
3rd Order harmonic	2B2-2B3	2D0-2D1	2EE-2EF	% x 10
4th Order harmonic	2B4-2B5	2D2-2D3	2F0-2F1	% x 10
5th Order harmonic	2B6-2B7	2D4-2D5	2F2-2F3	% x 10
6th Order harmonic	2B8-2B9	2D6-2D7	2F4-2F5	% x 10
7th Order harmonic	2BA-2BB	2D8-2D9	2F6-2F7	% x 10
8th Order harmonic	2BC-2BD	2DA-2DB	2F8-2F9	% x 10
9th Order harmonic	2BE-2BF	2DC-2DD	2FA-2FB	% x 10
10th Order harmonic	2C0-2C1	2DE-2DF	2FC-2FD	% x 10
11th Order harmonic	2C2-2C3	2E0-2E1	2FE-2FF	% x 10
12th Order harmonic	2C4-2C5	2E2-2E3	300-301	% x 10
13th Order harmonic	2C6-2C7	2E4-2E5	302-303	% x 10
14th Order harmonic	2C8-2C9	2E6-2E7	304-305	% x 10
15th Order harmonic	2CA-2CB	2E8-2E9	306-307	% x 10
16th Order harmonic	308-309	328-329	348-349	% x 10
17th Order harmonic	30A-30B	32A-32B	34A-34B	% x 10
18th Order harmonic	30C-30D	32C-32D	34C-34D	% x 10
19th Order harmonic	30E-30F	32E-32F	34E-34F	% x 10
20th Order harmonic	310-311	330-331	350-351	% x 10
21st Order harmonic	312-3 <mark>1</mark> 3	332-333	352-353	% x 10
22nd Order harmonic	314-3 1 5	334-335	354-355	% x 10
23rd Order harmonic	316-317	336-337	356-357	% x 10
24th Order harmonic	318-319	338-339	358-359	% x 10
25th Order harmonic	31A-31B	33A-33B	35A-35B	% x 10
26th Order harmonic	31C-31D	33C-33D	35C-35D	% x 10

Table 25: Modbus memo	ry Map 1:	: Voltage Harmonics
-----------------------	-----------	---------------------

Map 1							
Parameter	Voltage L1	Voltage L2	Voltage L3	Units			
27th Order harmonic	31E-31F	33E-33F	35E-35F	% x 10			
28th Order harmonic	320-321	340-341	360-361	% x 10			
29th Order harmonic	322-323	342-343	362-363	% x 10			
30th Order harmonic	324-325	344-345	364-365	% x 10			
31st Order harmonic	326-327	346-347	366-367	% x 10			

Table	25	(Continuation)	Modbus	memory	Map	1.	Voltage Harmonics	
Tupic	20	(continuation)	moubus	memory	map		voltage marmonies	

Table 26:Modbus memory Map 2: Voltage Harmonics

Map 2							
Parameter	Voltage L1	Voltage L2	Voltage L3	Units			
Fundamental Harm.	1A28-1A29	1A48-1A49	1A68-1A69	V x 10			
2nd Order harmonic	1A2A	1A4A	1A6A	% x 10			
3rd Order harmonic	1A2B	1A4B	1A6B	% x 10			
4th Order harmonic	1A2C	1A4C	1A6C	% x 10			
5th Order harmonic	1A2D	1A4D	1A6D	% x 10			
6th Order harmonic	1A2E	1A4E	1A6E	% x 10			
7th Order harmonic	1A2F	1A4F	1A6F	% x 10			
8th Order harmonic	1A30	1A50	1A70	% x 10			
9th Order harmonic	1A31	1A51	1A71	% x 10			
10th Order harmonic	1A32	1A52	1A72	% x 10			
11th Order harmonic	1A33	1A53	1A73	% x 10			
12th Order harmonic	1A34	1A54	1A74	% x 10			
13th Order harmonic	1A35	1A55	1A75	% x 10			
14th Order harmonic	1A36	1A56	1A76	% x 10			
15th Order harmonic	1A37	1A57	1A77	% x 10			
16th Order harmonic	1A38	1A58	1A78	% x 10			
17th Order harmonic	1A39	1A59	1A79	% x 10			
18th Order harmonic	1A3A	1A5A	1A7A	% x 10			
19th Order harmonic	1A3B	1A5B	1A7B	% x 10			
20th Order harmonic	1A3C	1A5C	1A7C	% x 10			
21st Order harmonic	1A3D	1A5D	1A7D	% x 10			
22nd Order harmonic	1A3E	1A5E	1A7E	% x 10			
23rd Order harmonic	1A3F	1A5F	1A7F	% x 10			
24th Order harmonic	1A40	1A60	1A80	% x 10			
25th Order harmonic	1A41	1A61	1A81	% x 10			
26th Order harmonic	1A42	1A62	1A82	% x 10			
27th Order harmonic	1A43	1A63	1A83	% x 10			
28th Order harmonic	1A44	1A64	1A84	% x 10			
29th Order harmonic	1A45	1A65	1A85	% x 10			
30th Order harmonic	1A46	1A66	1A86	% x 10			
31st Order harmonic	1A47	1A67	1A87	% x 10			

		Map 1		
Parameter	Current L1	Current L2	Current L3	Units
Fundamental Harm.	1F4-1F5	212-213	230-231	mA x 10
2nd Order harmonic	1F6-1F7	214-215	232-233	% x 10
3rd Order harmonic	1F8-1F9	216-217	234-235	% x 10
4th Order harmonic	1FA-1FB	218-219	236-237	% x 10
5th Order harmonic	1FC-1FD	21A-21B	238-239	% x 10
6th Order harmonic	1FE-1FF	21C-21D	23A-23B	% x 10
7th Order harmonic	200-201	21E-21F	23C-23D	% x 10
8th Order harmonic	202-203	220-221	23E-23F	% x 10
9th Order harmonic	204-205	222-223	240-241	% x 10
10th Order harmonic	206-207	224-225	242-243	% x 10
11th Order harmonic	208-209	226-227	244-245	% x 10
12th Order harmonic	20A-20B	228-229	246-247	% x 10
13th Order harmonic	20C-20D	22A-22B	248-249	% x 10
14th Order harmonic	20E-20F	22C-22D	24A-24B	% x 10
15th Order harmonic	210-211	22E-22F	24C-24D	% x 10
16th Order harmonic	24E-24F	26E-26F	28E-28F	% x 10
17th Order harmonic	250-251	270-271	290-291	% x 10
18th Order harmonic	252-253	272-273	292-293	% x 10
19th Order harmonic	254-255	274-275	294-295	% x 10
20th Order harmonic	256-257	276-277	296-297	% x 10
21st Order harmonic	258-259	278-279	298-299	% x 10
22nd Order harmonic	25A-25B	27A-27B	29A-29B	% x 10
23rd Order harmonic	25C-25D	27C-27D	29C-29D	% x 10
24th Order harmonic	25E-25F	27E-27F	29E-29F	% x 10
25th Order harmonic	260-261	280-281	2A0-2A1	% x 10
26th Order harmonic	262-263	282-283	2A2-2A3	% x 10
27th Order harmonic	264-265	284-285	2A4-2A5	% x 10
28th Order harmonic	266-267	286-287	2A6-2A7	% x 10
29th Order harmonic	268-269	288-289	2A8-2A9	% x 10
30th Order harmonic	26A-26B	28A-28B	2AA-2AB	% x 10
31st Order harmonic	26C-26D	28C-28D	2AC-2AD	% x 10

Table 27: Modbus memory Map 1: Current Harmonics

Table 28:Modbus memory Map 2: Current Harmonics

Map 2							
Parameter	Current L1	Current L2	Current L3	Units			
Fundamental Harm.	1A88-1A89	1AA8-1AA9	1AC8-1AC9	mA x 10			
2nd Order harmonic	1A8A	1AAA	1ACA	% x 10			
3rd Order harmonic	1A8B	1AAB	1ACB	% x 10			
4th Order harmonic	1A8C	1AAC	1ACC	% x 10			
5th Order harmonic	1A8D	1AAD	1ACD	% x 10			
6th Order harmonic	1A8E	1AAE	1ACE	% x 10			
7th Order harmonic	1A8F	1AAF	1ACF	% x 10			
8th Order harmonic	1A90	1AB0	1AD0	% x 10			
9th Order harmonic	1A91	1AB1	1AD1	% x 10			
10th Order harmonic	1A92	1AB2	1AD2	% x 10			

Map 2						
Parameter	Current L1	Current L2	Current L3	Units		
11th Order harmonic	1A93	1AB3	1AD3	% x 10		
12th Order harmonic	1A94	1AB4	1AD4	% x 10		
13th Order harmonic	1A95	1AB5	1AD5	% x 10		
14th Order harmonic	1A96	1AB6	1AD6	% x 10		
15th Order harmonic	1A97	1AB7	1AD7	% x 10		
16th Order harmonic	1A98	1AB8	1AD8	% x 10		
17th Order harmonic	1A99	1AB9	1AD9	% x 10		
18th Order harmonic	1A9A	1ABA	1ADA	% x 10		
19th Order harmonic	1A9B	1ABB	1ADB	% x 10		
20th Order harmonic	1A9C	1ABC	1ADC	% x 10		
21st Order harmonic	1A9D	1ABD	1ADD	% x 10		
22nd Order harmonic	1A9E	1ABE	1ADE	% x 10		
23rd Order harmonic	1A9F	1ABF	1ADF	% x 10		
24th Order harmonic	1AA0	1AC0	1AE0	% x 10		
25th Order harmonic	1AA1	1AC1	1AE1	% x 10		
26th Order harmonic	1AA2	1AC2	1AE2	% x 10		
27th Order harmonic	1AA3	1AC3	1AE3	% x 10		
28th Order harmonic	1AA4	1AC4	1AE4	% x 10		
29th Order harmonic	1AA5	1AC5	1AE4	% x 10		
30th Order harmonic	1AA6	1AC6	1AE6	% x 10		
31st Order harmonic	1AA7	1AC7	1AE7	% x 10		

Table 28 (Continuation) : Modbus memory Map 2: Current Harmonics

7.3.4. DELETING PARAMETERS.

All the Modbus map addresses are hexadecimal. The **Function 0x05** is implemented for these variables.

rane zemennen, map zeremig parameterer					
Parameters	Address	Valid data margin			
Deleting maximum values	849	FF00			
Deleting minimum values	84A	FF00			
Maximum demand initialization	852	FF00			
Deleting the hour counters (Tariff 1)	837	FF00			
Deleting the hour counters (Tariff 2)	83A	FF00			
Deleting energies per phase (L1, L2, L3) and three-phase energies	874	FF00			
Deleting three-phase energies	834	FF00			
Deleting energies per phase (L1, L2, L3)	873	FF00			
Deleting energies per phase (L1)	870	FF00			
Deleting energies per phase (L2)	871	FF00			
Deleting energies per phase (L3)	872	FF00			
Deleting all of the previous parameters	898	FF00			

Table 29: Modbus memory map: Deleting parameters.

7.3.5. POWER STATUS

All the Modbus map addresses are hexadecimal. The **function 0x04** is implemented for this variable. This variable indicates the quadrant in which the device is operating.

Table 30:Modbus memory map: Power status

Power status					
Variable	Address	Default value			
Power status	7D1	-			

The variable format is shown in Table 31:

Table	31:Variable	format:	Power	status.
Tuble	or. variable	Tormat.	1 01101	Status.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	1: Capacitive	1: Inductive	1: Generated	1: Consumed

7.3.6. DETECTION OF INCORRECT DIRECTION OF ROTATION

All the Modbus map addresses are hexadecimal.

The **function 0x04** is implemented for this variable.

This variable indicates whether an incorrect direction of rotation has been detected in the voltages.

Table 32:Modbus memory map: Detection of incorrect direction of rotation.

Detection of incorrect direction of rotation				
Variable	Address	Value		
Detection of incorrect direction of rotation	7D5	0: No fault has been detected 1: Fault detected		

7.3.7. DEVICE CONFIGURATION VARIABLES.

All the Modbus map addresses are hexadecimal. The **functions 0x04** and **0x10** are implemented for this variable.

The device's Modbus function does not check whether the variables recorded are within the correct margins, they are only checked when they are read from the EEPROM. So if any parameter is recorded with an incorrect value the device will be configured with its default value.

The Modbus configuration will not take effect until the device is reset.

7.3.7.1. Transformation ratios.

Table 33:Modbus memory map: Transformation ratios.

Transformation ratios				
Configuration variable ⁽⁴⁾	Address	Valid data margin	Default value	
Voltage primary	2710 - 2711	1 - 599999	1	
Voltage secondary	2712	1 - 999	1	
Current primary	2713	1 - 10000	5	

Table 33 (Continuation) : Modbus memory map: Transformation ratios.					
	Transformation ratios				
Configuration variable ⁽⁴⁾	Address	Valid data margin	Default value		
Current secondary (5)	2714	0:/1A 1:/5 A	1		

l l l ⁽⁴⁾ Voltage ratio x Current ratio ≤ 300000.

Voltage ratio ≤ 1000.

⁽⁵⁾ Parameter only configurable for the **CVM-E3-MINI-ITF** model.

Note: The ratio is between the primary and the secondary.

Note: The 5 registers must be written or read at once (as a group); otherwise. the system will respond with an error.

7.3.7.2. Number of quadrants

Table 34: Modbus memory map: Number of quadrants

Numberof quadrants				
Configuration variable	Address	Valid data margin	Default value	
Number of quadrants	2B64	0: 4 quadrants 1: 2 quadrants	0	

7.3.7.3. Measurement convention

Table 35: Modbus memory map: Measurement convention.

Measurement convention					
Configuration variable	Address	Valid data margin	Default value		
Measurement convention	2B86	0: Circutor 1: IEC 2: IEEE	0		

7.3.7.4. Measurement system

Table 36: Modbus memory map: Measurement system

Measurement system				
Configuration variable	Address	Valid data margin	Default value	
Measurement system	2B5C	 0: 4- 3Ph Three-phase network with 4 wires. 1: 3-3Ph Three-phase network with 3 wires. 2: 3- R-07 Three-phase network with 3 wires, Aron.⁽⁶⁾ 3: 3-2Ph Two-phase network with 3 wires. 4: 2-2Ph Single-phase network with 2 wires, phase-to-phase. 5: 2- IPh Single-phase network with 2 wires, phase-to-neutral. 	0	

⁽⁶⁾ Option not available for the **CVM-E3-MINI-FLEX** model.

7.3.7.5. Maximum demand

Table 37: Modbus memory map: Maximum demand

Maximum demand				
Configuration variable	Address	Valid data margin	Default value	
Integration period	274C	0: The maximum demand will not be calculated 1 - 60 minutes	0	

7.3.7.6. Display backlight

Table 38:Modbus memory map: Backlight

Backlight					
Configuration variable Address Valid data margin Default value					
Backlight	2B5E	1 - 999 seconds	300 s		

7.3.7.7. Activating the harmonics display screen

Table 39:Modbus memory map: Display of harmonics

Display of harmonics					
Configuration variable Address Valid data margin Default v					
Display of harmonics	2B62	0: No 1: Yes	1		

7.3.7.8. CO_2 consumption and generation emissions.

Table 40:Modbus memory map: CO₂ consumption and generation emissions.

CO ₂ emissions						
Configuration variable ⁽⁷⁾	Address	Valid data margin	Default value			
Tariff 1 consumption emissions ratio	2724	0 - 1.9999	0			
Tariff 2 consumption emissions ratio	2725	0 - 1.9999	0			
Tariff 1 generation emissions ratio	2728	0 - 1.9999	0			
Tariff 2 generation emissions ratio	2729	0 - 1.9999	0			

⁽⁷⁾They have 1 decimal place.

7.3.7.9. Cost of energy consumption and generation.

Table 41:Modbus memory map: Cost of energy consumption and generation.

Cost per kWh					
Configuration variable ⁽⁸⁾	Address	Valid data margin	Default value		
Cost per kWh of tariff 1 consumption	272C	0 - 1.9999	0		
Cost per kWh of tariff 2 consumption	272D	0 - 1.9999	0		
Cost per kWh of tariff 1 generation	2730	0 - 1.9999	0		
Cost per kWh of tariff 2 generation	2731	0 - 1.9999	0		

⁽⁸⁾ They have 1 decimal place.

7.3.7.10. Programming Digital Output T1

Table 42:Modbus memory map: Programming Digital Output T1 (Alarm)

Programming Digital Output : Alarm					
Configuration variable	Address	Valid data margin	Default value		
Maximum value	2AF8-2AF9	depending on the variable	0		
Minimum value	2AFA-2AFB	depending on the variable	0		
Variable code	2AFC	Table 17 and Table 18	0		
Connection delay	2AFD	0 - 9999 seconds	0		
Hysteresis	2AFE	0 - 99 %	0		
Latch	2AFF	0 : No 1: Yes	0		
Disconnection delay	2B00	0 - 9999 seconds	0		

Programming Digital Output : Alarm								
Configuration variable	Address	١	/alid da	ata ma	argin	D	efault	value
Contacts status	2B01	1	0 : Nori I: Norm	mally o nally cl	open osed		0	

 Table 42 (Continuation) : Modbus memory map: Programming Digital Output T1 (Alarm)

Table 43:Modbus memory map: Programming Digital Output T1 (pulses output)

Programming Digital Output : Pulses output					
Configuration variable Address Valid data margin Default value					
Kilowatts per impulse	2B20-2B21	0.001 - 999.99 kWh	1.00 kWh		
Variable code	2AFC	Table 19	0		
Pulse width	2B22	30 - 500 ms	100 ms		

7.3.7.11. Digital inputs

Table 44:Modbus memory map: Configuration of digital inputs.

Configuration variable	Address	Valid data margin	Default value
Operating mode	2B66	0: Tariff 1: Logic state	0

We can also read the status of the digital inputs when they are in logic mode:

The Function 0x04 is implemented for this variable.

Table 45:Modbus memory map: Status of the digital inputs (Logic state mode)

Status of digital inputs		
Variable	Address	Default value
Status of digital inputs	4E20	-

The variable format is shown in Table 46:

Table 46:Variable format: Status of digital inputs.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	0	0	Input 1 0: OFF 1: ON

7.3.7.12. Digital outputs

Reading the status of the digital outputs. The **Function 0x04** is implemented for this variable.

Table 47:Modbus memory map: Status of the digital outputs

Status of the digital outputs		
Variable	Address	Default value
Status of the digital outputs	4E21	-

The variable format is shown in Table 48:

	Table 40. Variable format. Otatus of the digital outputs.						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	0	0	Output 1 0: OFF 1: ON

7.3.7.13. Communications

Table 49:Modbus memory map: Communications

Communications				
Configuration variable	Address	Valid data margin	Default value	
Protocol	2742	0 : Modbus 1: Bacnet	0	
Modbus and BACnet: Peripheral number	2743	0 - 255	1	
Modbus : Baud rate	2744	0: 9600 - 1: 19200 - 2: 38400 3: 57600	1	
Modbus : Parity	2745	0: No parity 1: Odd parity 2: Even parity	0	
Modbus : Data bits	2746	0 : 8 bits 1: 7 bits	0	
Modbus : Stop bits	2747	0 : 1 stop bit 1: 2 stop bits	0	
BACnet: Device ID	2EE0-2EE1	0- 99999	2	
BAcnet: MAC	2EE2	0- 127	1	
BAcnet: Baud rate	2744	0 : 9600 - 1 :19200 - 2 :38400	1	

7.3.7.14. Password configuration

These variables allow you to lock or unlock access to the programming menu, and also allow you to change the password code. The password code may only be changed through this command.

The device does not need you to enter the old password in order for it to record the new one; it records the new one directly without any verification.

Table 30. modbus memory map. Password comiguration				
Password				
Configuration variable	Address	Valid data margin	Default value	
Password value ⁽⁹⁾	2B70	0 - 9999	1234	

2B71

Table 50: Modbus memory map: Password configuration

0: Unlock

1: Lock

0

⁽⁹⁾ The password value is read and written in hexadecimal.

7.4. **PROTOCOLLO BACnet**

Lock-Unlock

BACnet è un protocollo di comunicazione per la domotica ed il Network Control. Questo protocollo può sostituire le modalità di comunicazione proprietarie, divenendo un insieme di regole di comunicazione comuni che consente la completa integrazione della domotica e del controllo dei processi, costituiti da dispositivi di diversi produttori.

CVM/E3 adotta il sistema BACnet MS/TP, secondo le specifiche ANSI/ASHRAE 135 (ISO 16484-5). In connessione RS485, l'unità può collegarsi a una rete BACnet e incorporare tutti gli oggetti e i servizi definiti nella mappa PICS (Protocol Implementation Conformance Statement).

La velocità di default è 19200bps ed il MAC è 2 (nodo). Ogni parametro di comunicazione può essere modificato seguendo quanto indicato al capitolo 6.20.8 (identificatore DEVICE_ID compreso).

In alternativa si può sovrascrivere il valore OBJECT_NAME:

a) #Baud x - dove x può essere 9600, 19200 O 38400

b) #MAC x - dove x può essere: da 000 a 127

c) #ID x - dove x può essere: da 00000 a 99999

Per maggiori informazioni: www.bacnet.org

7.4.1. Mappa PICS

PICS		
Vendor Name:		CIRCUTOR
Product Name:		CVM-E3-MINI
Product Model Number:		837
Application Software Versio	on:	1.0
Firmware Revision:	0.7.1	
BACnet Protocol Revision:	10	

Product Description:

Electrical energy meter

BACnet Standardized Device Profile (Annex L)

x BACnet Application Specific Controller (B-ASC)

List all BACnet Interoperability Building supported (see Annex K in BACnet Addendum 135d):

DS-RP-B Read Property DS-WP-B Write Propery DS-RPM-B Read Property Multiple DM-DDB-B Dynamic Device Binding DM-DOB-B Dynamic Object Binding DM-DCC-B Device Communication Control DM-RD-B Reinitialize Device

Which of the following device binding methods does the product support? (check one or more)

Х	Recive Who-Is, send I-Am (BIBB DM-DDB-B)
Х	Recive Who-Has, send I-Have (BIBB DM-DOB-B)

Standard Object Types Supported:

Analog Input Object Type

1. Dynamically creatable using BACnet's CreateObject service?	No		
2. Dynamically deleatable using BACnet's DeleteObject service?	No		
3. List of optional properties supported: max_pres_value min_pres_value			
4. List of all properties that are writable where not otherw is a required by this standard			
5. List of proprietary properties:			
6. List of any property value range restrictions:			

Object_Name	max 32 characters				
DESCRIPTION		SYMBOL	ID OBJECTS	OBJECT NAME	UNITS
Tensión fase-neutro	Voltage phase to	V 1	AI0	Ph2NU1	V
Corriente	Current	A 1	Al1	Ph1Current	Α
Potencia activa	Active power	kW 1	AI2	ActPwrPh1	kW
Potencia reactiva	Reactive power	kvar 1	AI3	ReactPwrPh1	kvar
Factor de potencia	Power factor	PF 1		PwrEactPh1	PF
Tensión fase-neutro	Voltage phase to neutral	V 2	AI5	Ph2NU2	V
Corriente	Current	A 2	AI6	Ph2Current	А
Potencia activa	Active power	kW 2	AI7	ActPwrPh2	kW
Potencia reactiva	Reactive power	kvar 2	AI8	ReactPwrPh2	kvar
Factor de potencia	Power factor	PF 2	Al9	PwrFactPh2	PF
Tensión fase-neutro	Voltage phase to neutral	V 3	AI10	Ph2NU3	V
Corriente	Current	A 3	AI11	Ph3Current	А
Potencia activa	Active power	kW 3	AI12	ActPwrPh3	kW
Potencia reactiva	Reactive power	kvar 3	AI13	ReactPwrPh3	kvar
Factor de potencia	Power factor	PF 3	AI14	PwrFactPh3	PF
Potencia activa trifá- sica	Three phase active power	kW III	AI15	ActPwOn3Ph	kW
Potencia inductiva trifásica	Three phase reactive inductive power	kvarL III	AI16	InductPwOn3Ph	kvarL
Potencia capacitiva trifásica	Three phase capacitive inductive power	kvarC III	AI17	CapPwOn3Ph	kvarC
Cos φ trifásico	Three phase cos φ	Cos φ III	AI18	Cosphi	Cos φ
Factor de potencia trifásico	Three phase power factor	PFIII	AI19	PwFactOn3Ph	PF
Frecuencia (L2)	Frequency	Hz	AI20	Frequency	Hz
Tensión fase-fase	Voltage phase to phase	V12	AI21	Ph2PhU12	V
Tensión fase-fase	Voltage phase to phase	V23	AI22	Ph2PhU23	V
Tensión fase-fase	Voltage phase to phase	V31	AI23	Ph2PhU31	V
%THD V	%THD V	%THD V1	AI24	THDVal_U1	%THD
%THD V	%THD V	%THD V2	AI25	THDVal_U2	%THD
%THD V	%THD V	%THD V3	AI26	THDVal_U3	%THD
%THD A	%THD A	%THD A1	AI27	THDVal_I1	%THD
%THD A	%THD A	%THD A2	AI28	THDVal_l2	%THD
%THD A	%THD A	%THD A3	AI29	THDVal_l3	%THD
Energía activa	Active energy	kW∙h III	AI30	ActEnergy	kW•h
Energía reactiva in- ductiva	Reactive inductive energy	kvarL•h III	AI31	InductEnergy	kvarL•ł
Energía reactiva capa- citiva	Reactive capacitive energy	kvarC•h III	AI32	CapEnergy	kvarC•ł
Energía Aparente trifásica	Three phase aparent energy	kVA•h III	AI33	AppEnergy	kVA•h
Energía activa gene- rada	Three phase generated active energy	kW•h III (-)	AI34	ActEnergy_exp	kW∙h
Energía inductiva generada	Three phase genera- ted reactive inductive energy	kvarL•h III (-)	AI35	IndEnergy_exp	kvarL∙h
Energía capacitiva generada	Three phase genera- ted reactive capacitive energy	kvarC•h III(-)	AI36	CapEnergy_exp	kvarC•ł
Energía aparente	Three phase generated	kVA•h III (-)	AI37	AppEnergy_exp	kVA•h

aparent energy

generada

DESCRIPTION	SYMBOL	ID OBJECTS	OBJECT NAME	UNITS	
Corriente trifásica (media)	Three phase average current	I_AVG	AI38	AvgValCurr3Ph	I_AVG
Potencia aparente L1	Aparent power L1	kVA	AI40	AppPwrPh1	kVA
Potencia aparente L2	Aparent power L2	kVA	Al41	AppPwrPh2	kVA
Potencia aparente L3	Aparent power L3	kVA	AI42	AppPwrPh3	kVA
Potencia aparente trifásica	Three phase aparent power	kVAIII	AI43	AppPw3Ph	kVA
Máxima demanda I1	Maximum demand I1	Md (A1)	AI44	MaxDemand_A1	А
Máxima demanda I2	Maximum demand I2	Md(A2)	AI45	MaxDemand_A2	А
Máxima demanda 13	Maximum demand I3	Md(A3)	AI46	MaxDemand_A3	А
Máxima demanda A	Maximum demand A	A III	AI47	MaxDemand_A	А
Máxima demanda kW	Maximum demand kW	kW III	AI48	MaxDemand_kW	kW
Máxima demanda kVA	Maximum demand kVA	kVA III	AI49	MaxDemand_ kVA	kVA

Analog Value Object Type

I. Dynamically creatable using BACnet's CreateObject service? No				
2. Dynamically deleatable using BAC	Cnet's DeleteObject service?	No		
3. List of optional properties supported	ed:			
4. List of all properties that are writab	ble where not otherwise required by th	is standard		
5. List of propietary properties:				
Property Identifier Property Datatype Meaning				
5. List of object identifiers and their meaning in this device				
Object ID	Object Name	Description		
AV1	MAC_Address	MAC		
AV2 BaudRate		BAUD RATE		
AV3	Device_ID	DEVICE ID		

Device Object Type

1. Dynamically creatable using BACn	No			
2. Dynamically deleatable using BAC	net's DeleteObject service?	No		
3. List of optional properties supporte	d:	Description, Protocolo_Conformance_Class		
4. List of all properties that are writab	le where not otherwise requi	red by this standard		
Object_Name Max_Master Max_Info_Frames Object_Identifier				
5. List of propietary properties:				
5. List of any property value range restrictions				
Property Identifier Restrictions				
Object_Name	< 32 bytes			
Object_Identifier				
Number_Of_APDU_Retries				
APDU_Timeout				
Vendor_Identifier	0-65535			

Data Link Layer Options (check all that supported):

X MS/TP master (Clause 9), baud rate(s): 9.6, Character Sets Supported (check all that apply): MS/TP master (Clause 9), baud rate(s): 9.6, 19.2kB/s

Indicating support for multiple character set does not imply that they can all be supported simultaneously.

8. CARATTERISTICHE TECNICHE

Alimentazione in AC		
Tensione	207V 253V	
Frequenza	50Hz 60Hz	
Consumo	3.5VA	
Categoria di installazione	CAT III – 300V	

Circuito di misura della tensione					
Tensione nominale	300Vca (fase-neutro) - 520vca (fase-fase)				
Campo di misura	Dal 5% al 120% del valore nominale				
Campo di frequenza	45Hz 65Hz				
Impedenza di ingresso	400k Ω				
Minima tensione misurabile	11V fase-neutro				
Categoria di installazione	CAT III – 300V				
Circuito di misura della corrente					
CVM/E3/MINI/FLEX	Misura tramite i sensori flessibili CVM/FLEX				
Corrente nominale (In)	CVM/E3/MINI	/5A oppure/1A			
	CVM/E3/MINI/MC	/250mA			
	CVM/E3/MINI/FLEX	2000A			
Campo di misura	CVM/E3/MINI	2…120% In			
	CVM/E3/MINI/MC	2…100% In			
	CVM/E3/MINI/FLEX	2120% In			
Minima corrente di misura (I-start)	CVM/E3/MINI	10mA			
	CVM/E3/MINI/MC	1% In			
	CVM/E3/MINI/FLEX	5A			
Consumo	0.9 VA				
Categoria di installazione	CAT III – 300V				

Precisioni di misura (in conformità alla norma CEI EN 61557-12)				
	CVM/E3/MINI	±0.5% lettura ± 1 cifra		
Tensione	CVM/E3/MINI/MC			
	CVM/E3/MINI/FLEX ⁽¹⁰⁾			
Corrente	CVM/E3/MINI	$\pm 0.5\%$ lettura ± 1 cifra		
	CVM/E3/MINI/MC	±0.5% lettura ± 1 cifra (I<100% In)		
	CVM/E3/MINI/FLEX ⁽¹⁰⁾	±0.5% lettura ± 1 cifra		
Frequenza	CVM/E3/MINI			
	CVM/E3/MINI/MC	±0.5% lettura		
	CVM/E3/MINI/FLEX ⁽¹⁰⁾			
Potenza Attiva	CVM/E3/MINI	$\pm 0.5\%$ lettura ± 2 cifre		
	CVM/E3/MINI/MC	±1.0% lettura ± 2 cifre (I<100% In)		
	CVM/E3/MINI/FLEX ⁽¹⁰⁾	±2.0% lettura ± 2 cifre		
Potenza Reattiva	CVM/E3/MINI	$\pm 1.0\%$ lettura ± 2 cifre		
	CVM/E3/MINI/MC	±2.0% lettura ± 2 cifre (I<100% In)		
	CVM/E3/MINI/FLEX ⁽¹⁰⁾	$\pm 2.0\%$ lettura ± 2 cifre (a 50Hz)		
		$\pm 2.0\%$ lettura ± 2 cifre (a 60Hz)		
Potenza Apparente	CVM/E3/MINI	±0.5% lettura ± 2 cifre		
	CVM/E3/MINI/MC	±1.0% lettura ± 2 cifre (I>2%, I<100% In)		
	CVM/E3/MINI/FLEX ⁽¹⁰⁾	±2.0% lettura ± 2 cifre		

	CVM/E3/MINI	I < 0.1In=Classe 1	I > 0.1In=Classe
Energia Attiva	000000		0.5
	CVM/E3/MINI/MC	Classe 1 (I>2%, I<100% In)	
	CVM/E3/MINI/FLEX ⁽¹⁰⁾	Classe 2	
Energia Reattiva	CVM/E3/MINI	Classe 1	
	CVM/E3/MINI/MC	Classe 2 (I>29	%, I<100% In)
	CVM/E3/MINI/FLEX ⁽¹⁰⁾	Clas	se 2

(10) Inclusa la precisione del sensore CVM/FLEX

Ingresso digitale					
Quantità		1			
Тіро		NPN a potenziale libero			
Isolamento		Optoisolato			
Uscita digitale					
Quantità		1			
Тіро		Uscita NPN			
Tensione massima		24VDC			
Corrente massima		50mA			
Frequenza di scambio massima		16 impulsi/secondo			
Ampiezza dell'impulso		Da 30ms a 500ms pro	ogrammabile		
Interfaccia dati	N	lodbus RTU	BACnet		
Bus		RS485	MS/TP		
Protocollo	Ν	Modbus RTU	BACnet		
Velocità di trasmissione	9600-192	200-38400-57600 bps	9600-19200-38400 bps		
Bit di stop		1 – 2	1		
Parità	No	o – even - odd	No		
Interfaccia utente					
Display	ау		LCD custom COG ad elevato contrasto		
Tastiera	Tastiera		Capacitiva a 3 tasti		
Caratteristiche ambientali					
Temperatura di lavoro		Da -5°C a +45°C			
Umidità Relativa		Dal 5% al 95% senza condensa			
Altitudine massima		2000 metri slm			
Grado di Protezione		IP30 (pannello frontale IP40)			
Caratteristiche costruttive					
Dimensioni e peso		52.5 x 118 x 74 mm ; 0.30kg			
Contenitore		In plastica autoestinguente V0			
Riferimenti Normativi					
Sicurezza		CEI EN 61010-1 CAT III - 300Vca			
		doppio isolamento, Classe 2			
		CEI EN 61010-2-030			
EMC		CEI EN 61000-6-2	CEI EN 61000-6-4		
		CEI EN 61326-1			

8.1. DIMENSIONI ESTERNE

9. TRATTAMENTO DEI RIFIUTI DELLE APPARECCHIATURE ELETTRICHE ED ELETTRONICHE

Il prodotto al termine del suo ciclo di vita deve essere smaltito seguendo le norme vigenti relative allo smaltimento differenziato e non può essere trattato come un semplice rifiuto urbano.

Il prodotto deve essere smaltito presso i centri di raccolta dedicati o deve essere restituito al rivenditore nel caso si vuole sostituire il prodotto con un altro equivalente nuovo.

Il simbolo indica che il prodotto risponde ai requisiti richiesti dalle nuove direttive introdotte a tutela dell'ambiente (2011/65/EU, 2012/19/EU) e che deve essere smaltito in modo appropriato al termine del suo ciclo di vita.

Chiedere informazioni alle autorità locali in merito alle zone dedicate allo smaltimento dei rifiuti.

Chi non smaltisce il prodotto seguendo quanto qui indicato, ne risponde secondo le norme vigenti.

CVM/E3_MAN/Rev.ne 00-05/19

ASITA s.r.l Via Malpighi, 170 - 48018 Faenza (RA) Tel. +39 0546 620559 www.asita.com asita@asita.com